Suppr超能文献

第二配位层效应对铁蛋白中氧分子活化的作用机制:涉及酪氨酸自由基和阳离子结合位点的鉴定。

Second Coordination Sphere Effects on the Mechanistic Pathways for Dioxygen Activation by a Ferritin: Involvement of a Tyr Radical and the Identification of a Cation Binding Site.

机构信息

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Chembiochem. 2022 Jul 5;23(13):e202200257. doi: 10.1002/cbic.202200257. Epub 2022 May 23.

Abstract

Ferritins are ubiquitous diiron enzymes involved in iron(II) detoxification and oxidative stress responses and can act as metabolic iron stores. The overall reaction mechanisms of ferritin enzymes are still unclear, particularly concerning the role of the conserved, near catalytic center Tyr residue. Thus, we carried out a computational study of a ferritin using a large cluster model of well over 300 atoms including its first- and second-coordination sphere. The calculations reveal important insight into the structure and reactivity of ferritins. Specifically, the active site Tyr residue delivers a proton and electron in the catalytic cycle prior to iron(II) oxidation. In addition, the calculations highlight a likely cation binding site at Asp , which through long-range electrostatic interactions, influences the electronic configuration and charge distributions of the metal center. The results are consistent with experimental observations but reveal novel detail of early mechanistic steps that lead to an unusual mixed-valent iron(III)-iron(II) center.

摘要

铁蛋白是广泛存在的二价铁酶,参与铁(II)解毒和氧化应激反应,并可以作为代谢铁储存。铁蛋白酶的总体反应机制仍不清楚,特别是关于保守的、接近催化中心的 Tyr 残基的作用。因此,我们使用包括其第一和第二配位球的超过 300 个原子的大簇模型对铁蛋白进行了计算研究。这些计算揭示了铁蛋白结构和反应性的重要见解。具体来说,在铁(II)氧化之前,活性位点 Tyr 残基在催化循环中提供质子和电子。此外,计算突出了一个可能的阳离子结合位点 Asp ,通过远程静电相互作用,影响金属中心的电子构型和电荷分布。结果与实验观察结果一致,但揭示了导致异常混合价铁(III)-铁(II)中心的早期机制步骤的新细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/9401865/19c21cdcb0d9/CBIC-23-0-g003.jpg

相似文献

2
Reaction of O with a diiron protein generates a mixed-valent Fe/Fe center and peroxide.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2058-2067. doi: 10.1073/pnas.1809913116. Epub 2019 Jan 18.
3
Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.
Inorg Chem. 2012 Nov 5;51(21):11406-11. doi: 10.1021/ic3010135. Epub 2012 Oct 23.
4
Catalysis of iron core formation in Pyrococcus furiosus ferritin.
J Biol Inorg Chem. 2009 Nov;14(8):1265-74. doi: 10.1007/s00775-009-0571-z. Epub 2009 Jul 22.
5
The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.
Nat Chem Biol. 2012 Nov;8(11):941-8. doi: 10.1038/nchembio.1071. Epub 2012 Sep 23.
7
Functionality of the three-site ferroxidase center of Escherichia coli bacterial ferritin (EcFtnA).
Biochemistry. 2014 Jan 28;53(3):483-95. doi: 10.1021/bi401517f. Epub 2014 Jan 14.

引用本文的文献

1
Nitrile Hydroboration by Cooperative Iron Catalysis: An Experimental and Computational Study.
Chemistry. 2025 Jul 22;31(41):e202501782. doi: 10.1002/chem.202501782. Epub 2025 Jul 2.
3
The Unique Role of the Second Coordination Sphere to Unlock and Control Catalysis in Nonheme Fe(II)/2-Oxoglutarate Histone Demethylase KDM2A.
Inorg Chem. 2024 Jun 10;63(23):10737-10755. doi: 10.1021/acs.inorgchem.4c01365. Epub 2024 May 23.
5
Mechanism of Nitrogen Reduction to Ammonia in a Diiron Model of Nitrogenase.
Inorg Chem. 2023 Sep 11;62(36):14715-14726. doi: 10.1021/acs.inorgchem.3c02089. Epub 2023 Aug 31.
6
Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study.
Inorg Chem. 2023 Feb 6;62(5):2244-2256. doi: 10.1021/acs.inorgchem.2c03984. Epub 2023 Jan 18.

本文引用的文献

1
Electrostatic Perturbations in the Substrate-Binding Pocket of Taurine/α-Ketoglutarate Dioxygenase Determine its Selectivity.
Chemistry. 2022 Feb 16;28(9):e202104167. doi: 10.1002/chem.202104167. Epub 2022 Jan 22.
3
Key carboxylate residues for iron transit through the prokaryotic ferritin Ftn.
Microbiology (Reading). 2021 Nov;167(11). doi: 10.1099/mic.0.001105.
4
Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study.
Chemistry. 2021 Oct 1;27(55):13793-13806. doi: 10.1002/chem.202101878. Epub 2021 Aug 24.
5
Structure-Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations.
J Am Chem Soc. 2021 May 5;143(17):6560-6577. doi: 10.1021/jacs.1c01180. Epub 2021 Apr 22.
6
Ferritin with Atypical Ferroxidase Centers Takes B-Channels as the Pathway for Fe Uptake from .
Inorg Chem. 2021 May 17;60(10):7207-7216. doi: 10.1021/acs.inorgchem.1c00265. Epub 2021 Apr 14.
7
QM-Cluster Model Study of the Guaiacol Hydrogen Atom Transfer and Oxygen Rebound with Cytochrome P450 Enzyme GcoA.
J Phys Chem B. 2021 Apr 8;125(13):3296-3306. doi: 10.1021/acs.jpcb.0c10761. Epub 2021 Mar 30.
8
Biochemistry of aerobic biological methane oxidation.
Chem Soc Rev. 2021 Mar 7;50(5):3424-3436. doi: 10.1039/d0cs01291b. Epub 2021 Jan 25.
9
Bacterial iron detoxification at the molecular level.
J Biol Chem. 2020 Dec 18;295(51):17602-17623. doi: 10.1074/jbc.REV120.007746.
10
A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry.
Org Biomol Chem. 2021 Mar 11;19(9):1879-1899. doi: 10.1039/d0ob02204g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验