Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
Chem Soc Rev. 2021 Mar 7;50(5):3424-3436. doi: 10.1039/d0cs01291b. Epub 2021 Jan 25.
Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.
产甲烷菌代表了一种利用甲烷和减少甲烷排放的潜在途径。在它们的代谢途径的第一步中,好氧产甲烷菌使用甲烷单加氧酶(MMO)来激活甲烷,将其氧化为甲醇。有两种类型的 MMO:一种是颗粒状的、膜结合的酶(pMMO),另一种是可溶性的、细胞质的酶(sMMO)。这两种 MMO 完全没有关系,具有不同的结构、金属辅因子和机制。其中更常见的 pMMO 是铜依赖性的,但它的铜活性位点的身份仍不清楚。相比之下,sMMO 使用二铁活性位点,其催化循环已被很好地理解。在这里,我们回顾了这两种 MMO 的现有知识状况,重点介绍了最近的发展和新出现的假设。此外,我们还讨论了开发表达系统的障碍,这些系统是解决悬而未决的问题和促进未来蛋白质工程努力所必需的。