Suppr超能文献

一个活性部位的 Tyr 残基通过质子耦合电子转移引导非血红素铁赖氨酸-4-羟化酶对赖氨酸羟化的区域选择性。

An Active Site Tyr Residue Guides the Regioselectivity of Lysine Hydroxylation by Nonheme Iron Lysine-4-hydroxylase Enzymes through Proton-Coupled Electron Transfer.

机构信息

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.

Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

出版信息

J Am Chem Soc. 2024 May 1;146(17):11726-11739. doi: 10.1021/jacs.3c14574. Epub 2024 Apr 18.

Abstract

Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (, , and ) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model , the dipole moment is positioned along the C-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C-H hydroxylation selectivity. Furthermore, an active site Tyr residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr phenol loses a proton to the nearby Asp residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C-H bond of the substrate and guides the selectivity to the C-hydroxylation of the substrate.

摘要

赖氨酸双加氧酶(KDO)是人类生理学中的一种重要酶,参与触发胶原蛋白交联和血压控制的生物过程。自然界中有几种 KDO,但对于控制这些酶区域和立体选择性的因素知之甚少。为了了解 KDO 如何选择性地羟化其底物,我们对 4-赖氨酸双加氧酶的机制和特征进行了全面的计算研究。特别是,我们从 KDO5 的 MD 模拟中选择了一个快照,并创建了包含 297、312 和 407 个原子的大 QM 簇模型(,, 和 )。最大的模型预测了区域选择性,与从 C-H 位置提取氢原子的速率决定步骤相匹配,随后是快速 OH 反弹形成 4-羟基赖氨酸产物。计算表明,在模型 中,偶极矩沿底物的 C-H 键定位,因此,蛋白质的静电和电场扰动有助于酶产生 C-H 羟化选择性。此外,鉴定出一个活性位点 Tyr 残基,它通过质子偶联电子转移反应类似于细胞色素 c 过氧化物酶中的轴向 Trp 残基。因此,在催化循环中形成铁(IV)-氧物种后,Tyr 酚失去一个质子给附近的 Asp 残基,同时电子转移到铁上以形成铁(III)-氧活性物种。带电荷的酪氨酸残基沿底物的 C-H 键引导偶极矩,并引导选择性进行底物的 C-羟化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7fc/11066847/473d375c74ad/ja3c14574_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验