From the The University of Sydney, Sydney, Australia.
Johns Hopkins University, Baltimore, MD.
Invest Radiol. 2022 Nov 1;57(11):764-772. doi: 10.1097/RLI.0000000000000885. Epub 2022 May 3.
Cone beam computed tomography (CBCT) imaging is becoming an indispensable intraoperative tool; however, the current field of view prevents visualization of long anatomical sites, limiting clinical utility. Here, we demonstrate the longitudinal extension of the intraoperative CBCT field of view using a multi-turn reverse helical scan and assess potential clinical utility in interventional procedures.
A fixed-room robotic CBCT imaging system, with additional real-time control, was used to implement a multi-turn reverse helical scan. The scan consists of C-arm rotation, through a series of clockwise and anticlockwise rotations, combined with simultaneous programmed table translation. The motion properties and geometric accuracy of the multi-turn reverse helical imaging trajectory were examined using a simple geometric phantom. To assess potential clinical utility, a pedicle screw posterior fixation procedure in the thoracic spine from T1 to T12 was performed on an ovine cadaver. The multi-turn reverse helical scan was used to provide postoperative assessment of the screw insertion via cortical breach grading and mean screw angle error measurements (axial and sagittal) from 2 observers. For all screw angle measurements, the intraclass correlation coefficient was calculated to determine observer reliability.
The multi-turn reverse helical scans took 100 seconds to complete and increased the longitudinal coverage by 370% from 17 cm to 80 cm. Geometric accuracy was examined by comparing the measured to actual dimensions (0.2 ± 0.1 mm) and angles (0.2 ± 0.1 degrees) of a simple geometric phantom, indicating that the multi-turn reverse helical scan provided submillimeter and degree accuracy with no distortion. During the pedicle screw procedure in an ovine cadaver, the multi-turn reverse helical scan identified 4 cortical breaches, confirmed via the postoperative CT scan. Directly comparing the screw insertion angles (n = 22) measured in the postoperative multi-turn reverse helical and CT scans revealed an average difference of 3.3 ± 2.6 degrees in axial angle and 1.9 ± 1.5 degrees in the sagittal angle from 2 expert observers. The intraclass correlation coefficient was above 0.900 for all measurements (axial and sagittal) across all scan types (conventional CT, multi-turn reverse helical, and conventional CBCT), indicating excellent reliability between observers.
Extended longitudinal field-of-view intraoperative 3-dimensional imaging with a multi-turn reverse helical scan is feasible on a clinical robotic CBCT imaging system, enabling long anatomical sites to be visualized in a single image, including in the presence of metal hardware.
锥形束计算机断层扫描(CBCT)成像正在成为一种不可或缺的术中工具;然而,目前的视野限制了可视化长解剖部位的能力,限制了其临床应用。在这里,我们通过多圈反向螺旋扫描来展示术中 CBCT 视野的纵向扩展,并评估其在介入手术中的潜在临床应用。
使用带有实时控制功能的固定室机器人 CBCT 成像系统来实现多圈反向螺旋扫描。扫描由 C 臂旋转组成,通过一系列顺时针和逆时针旋转,结合同时编程的工作台平移。使用简单的几何模型来检查多圈反向螺旋成像轨迹的运动特性和几何精度。为了评估潜在的临床应用,在绵羊尸体上进行了 T1 至 T12 胸椎的经皮椎弓根螺钉后路固定术。使用多圈反向螺旋扫描对螺钉插入进行术后评估,通过皮质破裂分级和 2 名观察者的平均螺钉角度误差测量(轴向和矢状位)进行评估。对于所有螺钉角度测量,计算组内相关系数以确定观察者的可靠性。
多圈反向螺旋扫描耗时 100 秒,将纵向覆盖范围从 17cm 增加到 80cm,增加了 370%。通过比较实际尺寸(0.2 ± 0.1mm)和角度(0.2 ± 0.1 度),对简单的几何模型进行了几何精度检查,表明多圈反向螺旋扫描的精度可达亚毫米和度,且无失真。在绵羊尸体的椎弓根螺钉手术中,多圈反向螺旋扫描共发现 4 处皮质破裂,术后 CT 扫描结果得到了证实。通过比较术后多圈反向螺旋和 CT 扫描测量的螺钉插入角度(n=22),2 名专家观察者发现轴向角度的平均差异为 3.3 ± 2.6 度,矢状位角度的平均差异为 1.9 ± 1.5 度。在所有扫描类型(常规 CT、多圈反向螺旋和常规 CBCT)中,所有测量(轴向和矢状位)的组内相关系数均高于 0.900,表明观察者之间具有极好的可靠性。
在临床机器人 CBCT 成像系统上进行多圈反向螺旋扫描可实现扩展的长程纵向术中 3D 成像,能够在单次成像中可视化长解剖部位,包括存在金属硬件的情况下。