Suppr超能文献

使用具有未知位置的基准标记进行非圆锥形束 CT 轨道的全自动在线几何校准。

Fully automatic online geometric calibration for non-circular cone-beam CT orbits using fiducials with unknown placement.

机构信息

Johns Hopkins University, Baltimore, Maryland, USA.

Faculty of Medicine and Health, University of Sydney, Sydney, Australia.

出版信息

Med Phys. 2024 May;51(5):3245-3264. doi: 10.1002/mp.17041. Epub 2024 Apr 4.

Abstract

BACKGROUND

Cone-beam CT (CBCT) with non-circular scanning orbits can improve image quality for 3D intraoperative image guidance. However, geometric calibration of such scans can be challenging. Existing methods typically require a prior image, specialized phantoms, presumed repeatable orbits, or long computation time.

PURPOSE

We propose a novel fully automatic online geometric calibration algorithm that does not require prior knowledge of fiducial configuration. The algorithm is fast, accurate, and can accommodate arbitrary scanning orbits and fiducial configurations.

METHODS

The algorithm uses an automatic initialization process to eliminate human intervention in fiducial localization and an iterative refinement process to ensure robustness and accuracy. We provide a detailed explanation and implementation of the proposed algorithm. Physical experiments on a lab test bench and a clinical robotic C-arm scanner were conducted to evaluate spatial resolution performance and robustness under realistic constraints.

RESULTS

Qualitative and quantitative results from the physical experiments demonstrate high accuracy, efficiency, and robustness of the proposed method. The spatial resolution performance matched that of our existing benchmark method, which used a 3D-2D registration-based geometric calibration algorithm.

CONCLUSIONS

We have demonstrated an automatic online geometric calibration method that delivers high spatial resolution and robustness performance. This methodology enables arbitrary scan trajectories and should facilitate translation of such acquisition methods in a clinical setting.

摘要

背景

具有非圆形扫描轨道的锥形束 CT(CBCT)可以提高 3D 术中图像引导的图像质量。然而,这种扫描的几何校准可能具有挑战性。现有的方法通常需要事先知道基准配置、专用的体模、假定可重复的轨道或长的计算时间。

目的

我们提出了一种新颖的全自动在线几何校准算法,不需要事先了解基准配置。该算法速度快、精度高,可以适应任意扫描轨道和基准配置。

方法

该算法使用自动初始化过程消除了在基准定位中的人为干预,以及迭代细化过程以确保鲁棒性和准确性。我们提供了所提出算法的详细解释和实现。在实验室测试台和临床机器人 C 臂扫描仪上进行了物理实验,以评估在实际约束下的空间分辨率性能和鲁棒性。

结果

物理实验的定性和定量结果表明了该方法的高精度、高效率和鲁棒性。所提出方法的空间分辨率性能与我们现有的基准方法相匹配,该方法使用基于 3D-2D 配准的几何校准算法。

结论

我们已经证明了一种能够提供高空间分辨率和鲁棒性性能的自动在线几何校准方法。这种方法可以适应任意的扫描轨迹,应该有助于在临床环境中推广这种采集方法。

相似文献

2
Self-calibration of cone-beam CT geometry using 3D-2D image registration.
Phys Med Biol. 2016 Apr 7;61(7):2613-32. doi: 10.1088/0031-9155/61/7/2613. Epub 2016 Mar 10.
3
A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories.
Phys Med Biol. 2018 Jan 16;63(2):025030. doi: 10.1088/1361-6560/aa9910.
4
A nonconvex model-based combined geometric calibration scheme for micro cone-beam CT with irregular trajectories.
Med Phys. 2023 May;50(5):2759-2774. doi: 10.1002/mp.16257. Epub 2023 Feb 11.
7
A fully automatic fiducial detection and correspondence establishing method for online C-arm calibration.
Int J Comput Assist Radiol Surg. 2025 Jan;20(1):43-55. doi: 10.1007/s11548-024-03162-7. Epub 2024 May 10.
9
Tomosynthesis implementation with adaptive online calibration on clinical C-arm systems.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1481-1495. doi: 10.1007/s11548-018-1782-y. Epub 2018 May 8.
10
Correction of patient motion in cone-beam CT using 3D-2D registration.
Phys Med Biol. 2017 Nov 9;62(23):8813-8831. doi: 10.1088/1361-6560/aa9254.

引用本文的文献

1
RoboCT: The State and Current Challenges of Industrial Twin Robotic CT Systems.
Sensors (Basel). 2025 May 13;25(10):3076. doi: 10.3390/s25103076.
3
Investigating 4D respiratory cone-beam CT imaging for thoracic interventions on robotic C-arm systems: a deformable phantom study.
Phys Eng Sci Med. 2024 Dec;47(4):1751-1762. doi: 10.1007/s13246-024-01491-0. Epub 2024 Oct 24.

本文引用的文献

1
Cone-beam CT with a noncircular (sine-on-sphere) orbit: imaging performance of a clinical system for image-guided interventions.
J Med Imaging (Bellingham). 2024 Jul;11(4):043503. doi: 10.1117/1.JMI.11.4.043503. Epub 2024 Aug 22.
2
Practical workflow for arbitrary non-circular orbits for CT with clinical robotic C-arms.
Proc SPIE Int Soc Opt Eng. 2022 Jun;12304. doi: 10.1117/12.2647158. Epub 2022 Oct 17.
3
A nonconvex model-based combined geometric calibration scheme for micro cone-beam CT with irregular trajectories.
Med Phys. 2023 May;50(5):2759-2774. doi: 10.1002/mp.16257. Epub 2023 Feb 11.
5
Non-circular CBCT orbit design and realization on a clinical robotic C-arm for metal artifact reduction.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12034. doi: 10.1117/12.2612448. Epub 2022 Apr 4.
6
Feature-based CBCT self-calibration for arbitrary trajectories.
Int J Comput Assist Radiol Surg. 2022 Nov;17(11):2151-2159. doi: 10.1007/s11548-022-02645-9. Epub 2022 May 20.
7
Extended Intraoperative Longitudinal 3-Dimensional Cone Beam Computed Tomography Imaging With a Continuous Multi-Turn Reverse Helical Scan.
Invest Radiol. 2022 Nov 1;57(11):764-772. doi: 10.1097/RLI.0000000000000885. Epub 2022 May 3.
8
Universal orbit design for metal artifact elimination.
Phys Med Biol. 2022 May 23;67(11). doi: 10.1088/1361-6560/ac6aa0.
9
Wavelet-based background and noise subtraction for fluorescence microscopy images.
Biomed Opt Express. 2021 Jan 22;12(2):969-980. doi: 10.1364/BOE.413181. eCollection 2021 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验