University of Bordeaux, INRAE, UMR BFP, F-33882 Villenave d'Ornon, France.
Département de Biologie, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada.
ACS Synth Biol. 2022 May 20;11(5):1919-1930. doi: 10.1021/acssynbio.2c00062. Epub 2022 May 5.
Development of a new generation of vaccines is a key challenge for the control of infectious diseases affecting both humans and animals. Synthetic biology methods offer new ways to engineer bacterial chassis that can be used as vectors to present heterologous antigens and train the immune system against pathogens. Here, we describe the construction of a bacterial chassis based on the fast-growing , and the first steps toward its application as a live vaccine against contagious caprine pleuropneumonia (CCPP). To do so, the genome was cloned in yeast, modified by iterative cycles of Cas9-mediated deletion of loci encoding virulence factors, and transplanted back in subsp. recipient cells to produce the designed chassis. Deleted genes encoded the glycerol transport and metabolism systems GtsABCD and GlpOKF and the Mycoplasma Ig binding protein-Mycoplasma Ig protease (MIB-MIP) immunoglobulin cleavage system. Phenotypic assays of the chassis confirmed the corresponding loss of HO production and IgG cleavage activities, while growth remained unaltered. The resulting mycoplasma chassis was further evaluated as a platform for the expression of heterologous surface proteins. A genome locus encoding an inactivated MIB-MIP system from the CCPP-causative agent subsp. was grafted in replacement of its homolog at the original locus in the chassis genome. Both heterologous proteins were detected in the resulting strain using proteomics, confirming their expression. This study demonstrates that advanced genome engineering methods are henceforth available for the fast-growing , facilitating the development of novel vaccines, in particular against major mycoplasma diseases.
新一代疫苗的开发是控制人类和动物传染病的关键挑战。合成生物学方法为工程细菌底盘提供了新的途径,这些底盘可以作为载体来呈现异源抗原,训练免疫系统对抗病原体。在这里,我们描述了一种基于快速生长的细菌底盘的构建,以及将其作为传染性山羊胸膜肺炎(CCPP)活疫苗应用的初步步骤。为此,我们将 基因组克隆到酵母中,通过 Cas9 介导的多次基因缺失循环对其进行修饰,以删除编码毒力因子的基因座,并将其移植回 亚种受体细胞中,以产生设计的 底盘。缺失的基因编码甘油运输和代谢系统 GtsABCD 和 GlpOKF 以及支原体 Ig 结合蛋白-支原体 Ig 蛋白酶(MIB-MIP)免疫球蛋白切割系统。底盘的表型分析证实了相应的 HO 产生和 IgG 切割活性的丧失,而生长保持不变。所得支原体底盘进一步评估为表达异源表面蛋白的平台。在底盘基因组中原位点处的同源基因座中,插入了一个来自 CCPP 病原体 亚种的失活 MIB-MIP 系统的基因组基因座,以取代其同源物。使用蛋白质组学在产生的菌株中检测到两种异源蛋白,证实了它们的表达。本研究表明,先进的基因组工程方法现在可用于快速生长的 ,这将有助于开发新型疫苗,特别是针对主要支原体疾病的疫苗。