Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2201921119. doi: 10.1073/pnas.2201921119. Epub 2022 May 5.
Hyperthermophilic archaea are close to the origin of life. Some hyperthermophilic anaerobic archaea live under strong energy limitation and have to make a living near thermodynamic equilibrium. Obviously, this requires adaptations of the energy-conserving machinery to harness small energy increments. Their ATP synthases often have an unusual motor subunit c that is predicted to prevent ATP synthesis. We have purified and reconstituted into liposomes such an archaeal ATP synthase found in a mesophilic bacterium. The enzyme indeed synthesized ATP at physiological membrane potentials, despite its unusual c subunit, but the minimal driving force for ATP synthesis was found to be even lower than in ATP synthases with usual c subunits. These data not only reveal an intermediate in the transition from ATP hydrolases to ATP synthases but also give a rationale for a bioenergetic adaptation of microbial growth near the thermodynamic equilibrium.
嗜热古菌接近于生命起源。一些嗜热厌氧古菌生活在强大的能量限制下,不得不接近热力学平衡来维持生计。显然,这需要对能量守恒机制进行适应性调整,以利用微小的能量增量。它们的 ATP 合酶通常具有不寻常的马达亚基 c,该亚基被预测会阻止 ATP 合成。我们已经从一种嗜温细菌中纯化并重组了这样一种古菌 ATP 合酶。尽管存在不寻常的 c 亚基,但该酶确实在生理膜电位下合成了 ATP,但发现其合成 ATP 的最小驱动力甚至低于具有常见 c 亚基的 ATP 合酶。这些数据不仅揭示了从 ATP 水解酶到 ATP 合酶的过渡过程中的一个中间体,而且为微生物在接近热力学平衡的条件下的生物能量适应提供了一个合理的解释。