Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2308373120. doi: 10.1073/pnas.2308373120. Epub 2023 Oct 10.
A hybrid approach combining water-splitting electrochemistry and H-oxidizing, CO-fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H-mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H-oxidizing acetogenic bacterium that challenges such a classic view. We found that the planktonic is more efficient in utilizing reducing equivalent for ATP generation in the materials-biology hybrids than cells grown with H supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials' impact on microbial metabolism in seemingly simply H-mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials-biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.
一种结合水分解电化学和 H 氧化、CO 固定微生物的混合方法,为利用阳光、水和空气生产高附加值化学品提供了可行的解决方案。目前,经典智慧未经彻底检验,假设在这种 H 介导的过程中,电化学不会改变微生物的行为。在这里,我们报告了水分解电化学在 H 氧化产乙酸菌中诱导的出人意料的代谢重排,这对这种经典观点提出了挑战。我们发现,与 H 供应下生长的细胞相比,材料生物学杂化体中的浮游生物在利用还原当量生成 ATP 方面的效率更高,我们的代谢组学和蛋白质组学研究也支持了这一发现。利用还原当量和将 CO 固定为乙酸盐的效率从不到化学生物自养的 80%提高到电自养条件下的 95%以上。这些观察结果揭示了以前被低估的材料对生物和非生物成分之间看似简单的 H 介导电荷转移过程中微生物代谢的影响。对材料-生物学界面的这种更深入的理解将促进用于可持续化学转化的混合系统的高级设计。