Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany.
Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany.
Trends Biochem Sci. 2016 Jan;41(1):106-116. doi: 10.1016/j.tibs.2015.10.006. Epub 2015 Dec 4.
Rotary ATPases are energy-converting nanomachines found in the membranes of all living organisms. The mechanism by which proton translocation through the membrane drives ATP synthesis, or how ATP hydrolysis generates a transmembrane proton gradient, has been unresolved for decades because the structure of a critical subunit in the membrane was unknown. Electron cryomicroscopy (cryoEM) studies of two rotary ATPases have now revealed a hairpin of long, horizontal, membrane-intrinsic α-helices in the a-subunit next to the c-ring rotor. The horizontal helices create a pair of aqueous half-channels in the membrane that provide access to the proton-binding sites in the rotor ring. These recent findings help to explain the highly conserved mechanism of ion translocation by rotary ATPases.
旋转 ATP 酶是存在于所有生物体膜中的能量转换纳米机器。质子通过膜的转运如何驱动 ATP 合成,或者 ATP 水解如何产生跨膜质子梯度,几十年来一直没有得到解决,因为膜中一个关键亚基的结构尚不清楚。对两种旋转 ATP 酶的电子冷冻显微镜(cryoEM)研究现在揭示了在 c 环转子旁边的 a 亚基中长的水平、膜内在α-螺旋的发夹结构。水平螺旋在膜中形成一对水半通道,为转子环中的质子结合位点提供了通道。这些最近的发现有助于解释旋转 ATP 酶离子转运的高度保守机制。