Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
Curr Opin Chem Biol. 2022 Jun;68:102153. doi: 10.1016/j.cbpa.2022.102153. Epub 2022 May 2.
Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse transformations. While all radical SAM enzymes bind a FeS cluster via a characteristic tri-cysteine motif, many bind additional metal cofactors. Recently reported structures of radical SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in size and topology. Despite this architectural diversity, all use a common surface for auxiliary cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an important component of catalysis. Structures of these complexes represent important new frontiers in structural analysis of radical SAM enzymes.
激进的 S-腺苷甲硫氨酸(SAM)酶使用共同的催化核心进行多种转化。虽然所有激进的 SAM 酶都通过特征性的三半胱氨酸基序结合 FeS 簇,但许多酶还结合其他金属辅因子。最近报道的使用甲基钴胺素或其他铁-硫簇作为共底物的激进的 SAM 酶结构表明,这些辅助单元由 N 端和 C 端结构域锚定,这些结构域在大小和拓扑结构上差异很大。尽管存在这种结构多样性,但所有酶都使用共同的表面来辅助因子结合。在评估的硫插入和金属辅因子组装系统中,与铁-硫簇组装蛋白或下游支架蛋白的相互作用是催化的重要组成部分。这些复合物的结构代表了激进的 SAM 酶结构分析的重要新前沿。