Suppr超能文献

利用深度学习进行阿尔茨海默病分类的脑网络连通性特征提取。

Brain network connectivity feature extraction using deep learning for Alzheimer's disease classification.

机构信息

Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.

出版信息

Neurosci Lett. 2022 Jun 21;782:136673. doi: 10.1016/j.neulet.2022.136673. Epub 2022 May 2.

Abstract

Early diagnosis and therapeutic intervention for Alzheimer's disease (AD) is currently the only viable option for improving clinical outcomes. Combining structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI) to diagnose AD has yielded promising results. Most studies assume fixed time lags when constructing functional networks. Since the propagation delays between brain signals are constantly changing, these methods cannot reflect more detailed relationships between brain regions. In this work, we use a deep learning-based Granger causality estimator for brain connectivity construction. It exploits the strength of long short-term memory in ever-changing time series processing. This research involves data analysis from sMRI and rs-fMRI. We use sMRI to analyze the cerebral cortex properties and use rs-fMRI to analyze the graph metrics of functional networks. We extract a small subset of optimal features from both types of data. A support vector machine (SVM) is trained and tested to classify AD (n = 27) from healthy controls (n = 20) using rs-fMRI and sMRI features. Using a subset of optimal features in SVM, we achieve a classification accuracy of 87.23% for sMRI, 78.72% for rs-fMRI, and 91.49% for combined sMRI with rs-fMRI. The results show the potential to identify AD from healthy controls by integrating rs-fMRI and sMRI. The integration of sMRI and rs-fMRI modalities can provide supplemental information to improve the diagnosis of AD relative to either the sMRI or fMRI modalities alone.

摘要

目前,对阿尔茨海默病(AD)进行早期诊断和治疗干预是改善临床结果的唯一可行选择。将结构磁共振成像(sMRI)和静息态功能磁共振成像(rs-fMRI)相结合来诊断 AD 已取得了有希望的结果。大多数研究在构建功能网络时都假设固定的时间滞后。由于脑信号之间的传播延迟在不断变化,这些方法无法反映脑区之间更详细的关系。在这项工作中,我们使用基于深度学习的 Granger 因果关系估计器来构建脑连接。它利用了长短期记忆在不断变化的时间序列处理中的强大功能。这项研究涉及 sMRI 和 rs-fMRI 的数据分析。我们使用 sMRI 来分析大脑皮层的性质,使用 rs-fMRI 来分析功能网络的图度量。我们从这两种类型的数据中提取一小部分最佳特征。使用支持向量机(SVM)对 rs-fMRI 和 sMRI 特征进行训练和测试,以对 AD(n=27)和健康对照组(n=20)进行分类。使用 SVM 中的最佳特征子集,我们实现了 sMRI 的分类准确率为 87.23%,rs-fMRI 的分类准确率为 78.72%,sMRI 与 rs-fMRI 相结合的分类准确率为 91.49%。结果表明,通过整合 rs-fMRI 和 sMRI,有可能从健康对照组中识别出 AD。sMRI 和 rs-fMRI 模式的整合可以提供补充信息,相对于单独使用 sMRI 或 fMRI 模式,提高 AD 的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验