Suppr超能文献

核变形的力学和功能后果。

Mechanics and functional consequences of nuclear deformations.

机构信息

University of Mons, Soft Matter & Biomaterials Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Mons, Belgium.

Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.

出版信息

Nat Rev Mol Cell Biol. 2022 Sep;23(9):583-602. doi: 10.1038/s41580-022-00480-z. Epub 2022 May 5.

Abstract

As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.

摘要

细胞核是细胞遗传信息的所在地,在响应各种信号和刺激时,对于决定细胞命运和功能具有关键作用。除了生化输入外,细胞核还不断受到内在和外在机械力的影响,从而引发核结构和形态的动态变化。新出现的数据表明,核的物理变形调节许多细胞和核功能。这些功能长期以来一直被认为是细胞质信号通路的下游,并由基因表达决定。在这篇综述中,我们讨论了细胞核的机械调节的新观点,该观点将从染色质到核纤层和细胞骨架丝的物理连接视为一个单一的机械单元。我们描述了核变形在时间和空间上的关键机制,并对核对变形的结构和功能适应性反应进行了批判性回顾。然后,我们考虑了核变形对调节重要细胞功能(包括肌肉收缩、细胞迁移和人类疾病发病机制)的贡献。总的来说,这些新出现的观点为核变形的动力学及其在细胞机械生物学中的作用提供了新的认识。

相似文献

1
Mechanics and functional consequences of nuclear deformations.
Nat Rev Mol Cell Biol. 2022 Sep;23(9):583-602. doi: 10.1038/s41580-022-00480-z. Epub 2022 May 5.
2
[Advances in cell nuclear mechanobiology and its regulation mechanisms].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):617-624. doi: 10.7507/1001-5515.202304036.
3
4
Nuclear Mechanotransduction in Skeletal Muscle.
Cells. 2021 Feb 4;10(2):318. doi: 10.3390/cells10020318.
6
Regulation of Nuclear Mechanics and the Impact on DNA Damage.
Int J Mol Sci. 2021 Mar 20;22(6):3178. doi: 10.3390/ijms22063178.
7
Mechanobiology of the nucleus during the G2-M transition.
Nucleus. 2024 Dec;15(1):2330947. doi: 10.1080/19491034.2024.2330947. Epub 2024 Mar 27.
8
Novel contribution of epigenetic changes to nuclear dynamics.
Nucleus. 2019 Dec;10(1):42-47. doi: 10.1080/19491034.2019.1580100.
9
Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
Exp Biol Med (Maywood). 2015 Nov;240(11):1543-54. doi: 10.1177/1535370215583799. Epub 2015 Apr 23.
10
Nuclear envelope mechanobiology: linking the nuclear structure and function.
Nucleus. 2021 Dec;12(1):90-114. doi: 10.1080/19491034.2021.1962610.

引用本文的文献

1
Heterogeneity as a feature: unraveling chromatin's role in nuclear mechanics.
Nucleus. 2025 Dec;16(1):2545037. doi: 10.1080/19491034.2025.2545037. Epub 2025 Aug 21.
2
3
Abnormalities of the endocannabinoid system produce piercing nuclear hernias in migrating cerebral neurons.
iScience. 2025 Jul 23;28(8):113188. doi: 10.1016/j.isci.2025.113188. eCollection 2025 Aug 15.
4
Differential Crosslinking and Contractile Motors Drive Nuclear Chromatin Compaction.
bioRxiv. 2025 Jul 27:2025.07.24.666416. doi: 10.1101/2025.07.24.666416.
5
Vimentin intermediate filaments as structural and mechanical coordinators of mesenchymal cells.
Nat Cell Biol. 2025 Aug;27(8):1210-1218. doi: 10.1038/s41556-025-01713-x. Epub 2025 Aug 5.
6
Nucleo-cytoskeletal coupling controls intracellular deformation partitioning during cell stretching.
R Soc Open Sci. 2025 Jul 30;12(7):250409. doi: 10.1098/rsos.250409. eCollection 2025 Jul.
10
Nodal modulator (NOMO) is a force-bearing transmembrane protein required for muscle differentiation.
J Cell Biol. 2025 Sep 1;224(9). doi: 10.1083/jcb.202505010. Epub 2025 Jul 15.

本文引用的文献

1
Confined migration induces heterochromatin formation and alters chromatin accessibility.
iScience. 2022 Aug 17;25(9):104978. doi: 10.1016/j.isci.2022.104978. eCollection 2022 Sep 16.
2
Cytoplasmic forces functionally reorganize nuclear condensates in oocytes.
Nat Commun. 2022 Aug 29;13(1):5070. doi: 10.1038/s41467-022-32675-5.
3
Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer.
Oncogene. 2022 Sep;41(36):4211-4230. doi: 10.1038/s41388-022-02420-9. Epub 2022 Jul 27.
4
Control of nuclear size by osmotic forces in .
Elife. 2022 Jul 20;11:e76075. doi: 10.7554/eLife.76075.
5
Balance of osmotic pressures determines the nuclear-to-cytoplasmic volume ratio of the cell.
Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2118301119. doi: 10.1073/pnas.2118301119. Epub 2022 May 17.
6
Compressive forces driven by lateral actin fibers are a key to the nuclear deformation under uniaxial cell-substrate stretching.
Biochem Biophys Res Commun. 2022 Mar 15;597:37-43. doi: 10.1016/j.bbrc.2022.01.107. Epub 2022 Jan 29.
7
A synergy between mechanosensitive calcium- and membrane-binding mediates tension-sensing by C2-like domains.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2112390119.
9
A survey of physical methods for studying nuclear mechanics and mechanobiology.
APL Bioeng. 2021 Nov 18;5(4):041508. doi: 10.1063/5.0068126. eCollection 2021 Dec.
10
Nuclear pores dilate and constrict in cellulo.
Science. 2021 Dec 10;374(6573):eabd9776. doi: 10.1126/science.abd9776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验