Suppr超能文献

细胞骨架预应力调节心肌细胞的核形状和硬度。

Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

作者信息

Lee Hyungsuk, Adams William J, Alford Patrick W, McCain Megan L, Feinberg Adam W, Sheehy Sean P, Goss Josue A, Parker Kevin Kit

机构信息

Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA School of Mechanical Engineering, Yonsei University, Seoul 120-749, Korea.

Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Exp Biol Med (Maywood). 2015 Nov;240(11):1543-54. doi: 10.1177/1535370215583799. Epub 2015 Apr 23.

Abstract

Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations.

摘要

心肌细胞核上的机械应力与多种疾病相关,并可能将机械刺激转化为细胞反应。尽管已确定核膜与细胞质细丝之间存在一些物理联系,但先前的研究主要集中在细胞核单个组件的力学特性上,如核膜和核纤层网络。细胞骨架与染色质之间关于核变形性的机械相互作用仍不清楚。在此,我们研究了细胞骨架和染色质结构如何影响心肌细胞的核力学。染色质的快速解聚和核膜破裂导致DNA突然扩张,这是施加在细胞核上的预应力的结果。为了表征施加在细胞核上的预应力,我们在破坏细胞骨架、肌原纤维和染色质结构期间测量了分离细胞核以及活心肌细胞中细胞核的形状和刚度。我们发现心肌细胞中的细胞核同时受到拉伸预应力和压缩预应力,其变形性由这些相反力的平衡决定。通过建立预应力细胞核的计算模型,我们表明细胞骨架和染色质预应力会使核膜变得脆弱。我们的研究表明,细胞骨架 - 核 - 染色质的相互连接可能在心肌细胞收缩力学以及由核纤层蛋白突变引起的核纤层病的发展中起重要作用。

相似文献

1
Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.细胞骨架预应力调节心肌细胞的核形状和硬度。
Exp Biol Med (Maywood). 2015 Nov;240(11):1543-54. doi: 10.1177/1535370215583799. Epub 2015 Apr 23.
6
Modeling stem cell nucleus mechanics using confocal microscopy.使用共聚焦显微镜对干细胞核力学进行建模。
Biomech Model Mechanobiol. 2021 Dec;20(6):2361-2372. doi: 10.1007/s10237-021-01513-w. Epub 2021 Aug 23.

引用本文的文献

1
Microtubule forces drive nuclear damage in cardiomyopathy.微管力在心肌病中导致核损伤。
bioRxiv. 2024 Oct 5:2024.02.10.579774. doi: 10.1101/2024.02.10.579774.
3
Soft bioelectronics for cardiac interfaces.用于心脏接口的柔性生物电子学。
Biophys Rev (Melville). 2022 Jan 12;3(1):011301. doi: 10.1063/5.0069516. eCollection 2022 Mar.

本文引用的文献

8
Probing structural stability of chromatin assembly sorted from living cells.探究从活细胞中分选出来的染色质组装体的结构稳定性。
Biochem Biophys Res Commun. 2009 Aug 7;385(4):518-22. doi: 10.1016/j.bbrc.2009.05.086. Epub 2009 May 24.
9
Computational study of growth and remodelling in the aortic arch.主动脉弓生长与重塑的计算研究。
Comput Methods Biomech Biomed Engin. 2008 Oct;11(5):525-38. doi: 10.1080/10255840801930710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验