Suppr超能文献

一种应用于突变特征的半参数核独立性检验。

A semiparametric kernel independence test with application to mutational signatures.

作者信息

Lee DongHyuk, Zhu Bin

机构信息

Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

J Am Stat Assoc. 2021;116(536):1648-1661. doi: 10.1080/01621459.2020.1871357. Epub 2021 Feb 16.

Abstract

Cancers arise owing to somatic mutations, and the characteristic combinations of somatic mutations form mutational signatures. Despite many mutational signatures being identified, mutational processes underlying a number of mutational signatures remain unknown, which hinders the identification of interventions that may reduce somatic mutation burdens and prevent the development of cancer. We demonstrate that the unknown cause of a mutational signature can be inferred by the associated signatures with known etiology. However, existing association tests are not statistically powerful due to excess zeros in mutational signatures data. To address this limitation, we propose a semiparametric kernel independence test (SKIT). The SKIT statistic is defined as the integrated squared distance between mixed probability distributions and is decomposed into four disjoint components to pinpoint the source of dependency. We derive the asymptotic null distribution and prove the asymptotic convergence of power. Due to slow convergence to the asymptotic null distribution, a bootstrap method is employed to compute -values. Simulation studies demonstrate that when zeros are prevalent, SKIT is more resilient to power loss than existing tests and robust to random errors. We applied SKIT to The Cancer Genome Atlas (TCGA) mutational signatures data for over 9,000 tumors across 32 cancer types, and identified a novel association between signature 17 curated in the Catalogue Of Somatic Mutations In Cancer (COSMIC) and apolipoprotein B mRNA editing enzyme (APOBEC) signatures in gastrointestinal cancers. It indicates that APOBEC activity is likely associated with the unknown cause of signature 17.

摘要

癌症是由体细胞突变引起的,体细胞突变的特征组合形成了突变特征。尽管已经鉴定出许多突变特征,但一些突变特征背后的突变过程仍然未知,这阻碍了能够降低体细胞突变负担并预防癌症发生的干预措施的识别。我们证明,可以通过具有已知病因的相关特征来推断突变特征的未知原因。然而,由于突变特征数据中存在过多的零值,现有的关联检验在统计上缺乏效力。为了解决这一局限性,我们提出了一种半参数核独立性检验(SKIT)。SKIT统计量被定义为混合概率分布之间的积分平方距离,并被分解为四个不相交的分量以确定依赖源。我们推导了渐近零分布并证明了检验功效的渐近收敛性。由于向渐近零分布的收敛速度较慢,因此采用了一种自助法来计算p值。模拟研究表明,当零值普遍存在时,SKIT比现有检验对功效损失更具弹性,并且对随机误差具有鲁棒性。我们将SKIT应用于癌症基因组图谱(TCGA)中32种癌症类型的9000多个肿瘤的突变特征数据,并在癌症体细胞突变目录(COSMIC)中策划的特征17与胃肠道癌症中的载脂蛋白B mRNA编辑酶(APOBEC)特征之间发现了一种新的关联。这表明APOBEC活性可能与特征17的未知原因有关。

相似文献

1

本文引用的文献

1
The repertoire of mutational signatures in human cancer.人类癌症中的突变特征谱。
Nature. 2020 Feb;578(7793):94-101. doi: 10.1038/s41586-020-1943-3. Epub 2020 Feb 5.
2
Pan-cancer analysis of whole genomes.泛癌症全基因组分析。
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
7
Clock-like mutational processes in human somatic cells.人类体细胞中类似时钟的突变过程。
Nat Genet. 2015 Dec;47(12):1402-7. doi: 10.1038/ng.3441. Epub 2015 Nov 9.
9
Mechanisms underlying mutational signatures in human cancers.人类癌症中突变特征的潜在机制。
Nat Rev Genet. 2014 Sep;15(9):585-98. doi: 10.1038/nrg3729. Epub 2014 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验