Koulgi Shruti, Jani Vinod, Uppuladinne Mallikarjunachari V N, Sonavane Uddhavesh, Joshi Rajendra
High Performance Computing Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Panchvati, Pashan Pune India
RSC Adv. 2020 Jul 17;10(45):26792-26803. doi: 10.1039/d0ra04743k. eCollection 2020 Jul 15.
The efforts towards developing a potential drug against the current global pandemic, COVID-19, have increased in the past few months. Drug development strategies to target the RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are being tried worldwide. The gene encoding this protein, is known to be conserved amongst positive strand RNA viruses. This enables an avenue to repurpose the drugs designed against earlier reported inhibitors of RdRP. One such strong inhibitor is remdesivir which has been used against EBOLA infections. The binding of remdesivir to RdRP of SARS-CoV-2 has been studied using the classical molecular dynamics and ensemble docking approach. A comparative study of the simulations of RdRP in the apo and remdesivir-bound form revealed blocking of the template entry site in the presence of remdesivir. The conformation changes leading to this event were captured through principal component analysis. The conformational and thermodynamic parameters supported the experimental information available on the involvement of crucial arginine, serine and aspartate residues belonging to the conserved motifs in RdRP functioning. The catalytic site comprising of SER 759, ASP 760, and ASP 761 (SDD) was observed to form strong contacts with remdesivir. The significantly strong interactions of these residues with remdesivir may infer the latter's binding similar to the normal nucleotides thereby remaining unidentified by the exonuclease activity of RdRP. The ensemble docking of remdesivir too, comprehended the involvement of similar residues in interaction with the inhibitor. This information on crucial interactions between conserved residues of RdRP with remdesivir through approaches may be useful in designing inhibitors.
在过去几个月里,针对当前全球大流行疾病 COVID-19 研发潜在药物的努力有所增加。全球都在尝试以严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的 RNA 依赖性 RNA 聚合酶(RdRP)为靶点的药物研发策略。已知编码这种蛋白质的基因在正链 RNA 病毒中是保守的。这为重新利用针对先前报道的 RdRP 抑制剂设计的药物提供了一条途径。一种这样的强效抑制剂是瑞德西韦,它已被用于治疗埃博拉感染。已使用经典分子动力学和整体对接方法研究了瑞德西韦与 SARS-CoV-2 的 RdRP 的结合。对无配体和结合瑞德西韦形式的 RdRP 模拟的比较研究表明,在存在瑞德西韦的情况下,模板进入位点被阻断。通过主成分分析捕捉到了导致这一事件的构象变化。构象和热力学参数支持了关于 RdRP 功能中属于保守基序的关键精氨酸、丝氨酸和天冬氨酸残基参与情况的现有实验信息。观察到由 SER 759、ASP 760 和 ASP 761(SDD)组成的催化位点与瑞德西韦形成了强相互作用。这些残基与瑞德西韦的显著强相互作用可能意味着后者的结合类似于正常核苷酸,从而不会被 RdRP 的核酸外切酶活性识别。瑞德西韦的整体对接也理解了类似残基在与抑制剂相互作用中的参与情况。通过这些方法获得的关于 RdRP 保守残基与瑞德西韦之间关键相互作用的信息可能有助于设计抑制剂。