Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
J Biomol Struct Dyn. 2022;40(23):13032-13048. doi: 10.1080/07391102.2021.1978322. Epub 2021 Oct 11.
In this study, we propose our novel benzophenone-coumarin derivatives (BCDs) as potent inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus, one of the key targets that are involved in the viral genome replication. We aim to evaluate the antiviral potential of BCDs against this protein target, which involves molecular docking simulations, druglikeliness and pharmacokinetic evaluations, PASS analysis, molecular dynamics simulations, and computing binding free energy. Out of all the BCDs screened through these parameters, BCD-8 was found to be the most efficient and potent inhibitor of SARS-CoV-2 RdRp. During molecular docking simulation, BCD-8 showed an extensive molecular interaction in comparison with that of the standard control used, remdesivir. The druglikeliness and pharmacokinetic analyses also proved the efficiency of BCD-8 as an effective drug without adverse effects. Further, pharmacological potential analysis through PASS depicted the antiviral property of BCD-8. With these findings, we performed molecular dynamics simulations, where BCD-8 edged out remdesivir with its exemplary stable interaction with SARS-CoV-2 RdRp. Furthermore, binding free energy of both BCD-8 and remdesivir was calculated, where BCD-8 showed a lower binding energy and standard deviations in comparison with that of remdesivir. Moreover, being a non-nucleoside analogue, BCD-8 can be used effectively against SARS-CoV-2, whereas nucleoside analogues like remdesivir may become non-functional or less functional due to exonuclease activity of nsp14 of the virus. Therefore, we propose BCD-8 as a SARS-CoV-2 RdRp inhibitor, showing higher predicted efficiency than remdesivir in all the experiments conducted.Communicated by Ramaswamy H. Sarma.
在这项研究中,我们提出了我们的新型二苯甲酮-香豆素衍生物(BCDs)作为 SARS-CoV-2 病毒的 RNA 依赖性 RNA 聚合酶(RdRp)的有效抑制剂,这是参与病毒基因组复制的关键靶标之一。我们旨在评估 BCD 对该蛋白靶标的抗病毒潜力,这涉及分子对接模拟、药物相似性和药代动力学评估、PASS 分析、分子动力学模拟和计算结合自由能。在通过这些参数筛选的所有 BCD 中,发现 BCD-8 是 SARS-CoV-2 RdRp 最有效和最有效的抑制剂。在分子对接模拟中,与使用的标准对照药物瑞德西韦相比,BCD-8 表现出广泛的分子相互作用。药物相似性和药代动力学分析也证明了 BCD-8 作为一种有效药物的效率,没有不良反应。此外,通过 PASS 进行的药理学潜力分析描述了 BCD-8 的抗病毒特性。有了这些发现,我们进行了分子动力学模拟,其中 BCD-8 以其与 SARS-CoV-2 RdRp 的出色稳定相互作用超越了瑞德西韦。此外,还计算了 BCD-8 和瑞德西韦的结合自由能,其中 BCD-8 与瑞德西韦相比表现出较低的结合能和标准偏差。此外,作为一种非核苷类似物,BCD-8 可以有效地对抗 SARS-CoV-2,而核苷类似物如瑞德西韦可能由于病毒的 nsp14 外切核酸酶活性而变得功能丧失或功能降低。因此,我们提出 BCD-8 作为 SARS-CoV-2 RdRp 抑制剂,在所有进行的实验中显示出比瑞德西韦更高的预测效率。由 Ramaswamy H. Sarma 传达。