Maryam Lubna, Khalid Shamsi, Ali Abid, Khan Asad U
Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh Uttar Pradesh 202 002 India
RSC Adv. 2019 Feb 12;9(10):5325-5337. doi: 10.1039/c8ra10313e. eCollection 2019 Feb 11.
Members of Enterobacteriaceae cause antibiotic-resistant infections worldwide. One such marker, CTX-M-15, expressed by Enterobacteriaceae produces β-lactamases, which hydrolyze the cephalosporin group of antibiotics, such as cefotaxime, used in the treatment of both Gram-positive and negative bacterial infections. Amino acid residues present in close proximity of the active site might also play a major role in the structure and function of CTX-M-15, hence the objective of this study was to investigate the significance of two amino acid residues, Asn-247 and Arg-64, present near to the active site in the hydrolysis of cefotaxime. , cloned from the strain, and using Polymerase Chain Reaction (PCR)-based site-directed mutagenesis, Asn247Val and Arg64Leu mutations were introduced. The minimum inhibitory concentrations of cefotaxime for the CTX-M-15 (N247V) and CTX-M-15 (R64L) mutants were reduced by 512 and 128 fold, respectively. Proteins/enzymes of wild-type CTX-M-15, CTX-M-15 (N247V) and CTX-M-15 (R64L) mutants were expressed and purified. Kinetic studies showed that the catalytic efficiencies of the N247V mutant and R64L mutant enzymes in the hydrolysis of cefotaxime were reduced by 89.66% and 71.11%, respectively. Circular dichroism spectroscopic studies showed considerable changes in the α-helical content of the mutant enzymes. A fluorescence study showed that N247V mutant-cefotaxime and R64L mutant-cefotaxime underwent complex formation with strong interactions. The study provides an understanding of the crucial role of the amino acid residues asparagine 247 and arginine 64 present in close proximity of the active site in the hydrolytic mechanism of CTX-M-15 type β-lactamases. Hence, Asn-247 and Arg-64 can be used as potential target sites for the design of inhibitory molecules against CTX-M-15-producing bacterial strains.
肠杆菌科细菌在全球范围内引发抗生素耐药性感染。其中一种标志物CTX-M-15由肠杆菌科细菌表达,可产生β-内酰胺酶,该酶能水解用于治疗革兰氏阳性和阴性细菌感染的头孢菌素类抗生素,如头孢噻肟。活性位点附近的氨基酸残基可能在CTX-M-15的结构和功能中也发挥着重要作用,因此本研究的目的是探究活性位点附近的两个氨基酸残基天冬酰胺-247(Asn-247)和精氨酸-64(Arg-64)在头孢噻肟水解中的意义。从该菌株中克隆,并使用基于聚合酶链反应(PCR)的定点诱变技术,引入了Asn247Val和Arg64Leu突变。头孢噻肟对CTX-M-15(N247V)和CTX-M-15(R64L)突变体的最低抑菌浓度分别降低了512倍和128倍。表达并纯化了野生型CTX-M-15、CTX-M-15(N247V)和CTX-M-15(R64L)突变体的蛋白质/酶。动力学研究表明,N247V突变体酶和R64L突变体酶在头孢噻肟水解中的催化效率分别降低了89.66%和71.11%。圆二色光谱研究表明突变体酶的α-螺旋含量发生了显著变化。荧光研究表明,N247V突变体-头孢噻肟和R64L突变体-头孢噻肟形成了具有强相互作用的复合物。该研究有助于理解活性位点附近的氨基酸残基天冬酰胺247和精氨酸64在CTX-M-15型β-内酰胺酶水解机制中的关键作用。因此,天冬酰胺-247和精氨酸-64可作为设计针对产生CTX-M-15的细菌菌株的抑制性分子的潜在靶点。