Moses Abraham B
Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad-500046 Telangana India
RSC Adv. 2020 Jul 2;10(42):24867-24876. doi: 10.1039/d0ra04782a. eCollection 2020 Jun 29.
Pressure on the scale of gigapascals can cause incredible variations in the physicochemical and detonation characteristics of energetic materials. As a continuation of our earlier work (B. Moses Abraham, , , 2018, , 29693-29707), here we report the high pressure structural and vibrational properties of 5,5'-bitetrazole-1,1'-diolate based energetic ionic salts dispersion-corrected density functional theory calculations. Remarkably, these energetic materials exhibit anisotropic behavior along three crystallographic directions with progressing pressure; especially, the maximum and minimum reduction in volume is observed for HA-BTO and TKX-50, respectively. The large bulk modulus of TKX-50 (28.64) indicates its hard nature when compared to other BTO-based energetic salts. The effect of pressure on hydrogen bonded D-H⋯A energetic materials induces spectral shift (lengthening/shortening) in the donor group (D-H) of the stretching vibrations and is widely recognized as the signature of hydrogen bonding. We observed unusual contraction of the D-H bond under compression due to the short range repulsive forces encountered by the H atom while the molecule attempts to stabilize. The Hirshfeld surface analysis highlights the pressure induced stabilization of HA-BTO due to increased N⋯H/H⋯N and O⋯H/H⋯O close contact of hydrogen bond acceptors and donors. These studies provide theoretical guidance as a function of pressure, on how the micro-structures and intermolecular interactions can tune macroscopic properties to enhance the energetic performance.
吉帕斯卡量级的压力会导致含能材料的物理化学和爆轰特性发生惊人的变化。作为我们早期工作(B. 摩西·亚伯拉罕,……,2018年,……,29693 - 29707)的延续,在此我们报告基于5,5'-双四唑-1,1'-二醇盐的含能离子盐的高压结构和振动特性——色散校正密度泛函理论计算。值得注意的是,随着压力增加,这些含能材料沿三个晶体学方向呈现各向异性行为;特别是,HA - BTO和TKX - 50分别观察到最大和最小的体积减小。与其他基于BTO的含能盐相比,TKX - 50的大体积模量(28.64)表明其硬度较大。压力对氢键合的D - H⋯A含能材料的影响会在拉伸振动的供体基团(D - H)中引起光谱位移(变长/变短),这被广泛认为是氢键的特征。我们观察到在压缩下D - H键出现异常收缩,这是由于分子试图稳定时H原子遇到短程排斥力。Hirshfeld表面分析突出了由于氢键受体和供体的N⋯H/H⋯N和O⋯H/H⋯O紧密接触增加,压力诱导HA - BTO的稳定性增强。这些研究提供了作为压力函数的理论指导,关于微观结构和分子间相互作用如何调节宏观性质以提高含能性能。