Wang Chin-I, Chang Teng-Jan, Wang Chun-Yuan, Yin Yu-Tung, Shyue Jing-Jong, Lin Hsin-Chih, Chen Miin-Jang
Department of Materials Science and Engineering, National Taiwan University Taipei Taiwan
Research Center for Applied Science, Academia Sinica Taipei Taiwan.
RSC Adv. 2019 Jan 2;9(2):592-598. doi: 10.1039/c8ra07652a.
For high-performance nanoscale Ge-based transistors, one important point of focus is interfacial germanium oxide (GeO ), which is thermodynamically unstable and easily desorbed. In this study, an atomic-layer-deposited AlN buffer layer was introduced between the crystalline ZrO high- gate dielectrics and epitaxial Ge, in order to reduce the formation of interfacial GeO . The results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy demonstrate that the AlN buffer layer suppressed the formation of interfacial GeO . Hence, significant enhancement of the electrical characteristics of Ge metal-oxide-semiconductor (MOS) capacitors was achieved with a two-orders-of-magnitude reduction in the gate leakage current, a 34% enhancement of the MOS capacitance, and a lower interfacial state density. The results indicate that the AlN buffer layer is effective in providing a high-quality interface to improve the electrical performance of advanced Ge MOS devices.
对于高性能纳米级锗基晶体管而言,一个重要的关注点是界面氧化锗(GeO),它在热力学上不稳定且容易解吸。在本研究中,在晶体氧化锆高栅极电介质与外延锗之间引入了原子层沉积的氮化铝缓冲层,以减少界面氧化锗的形成。X射线光电子能谱和高分辨率透射电子显微镜的结果表明,氮化铝缓冲层抑制了界面氧化锗的形成。因此,锗金属氧化物半导体(MOS)电容器的电学特性得到了显著增强,栅极漏电流降低了两个数量级,MOS电容提高了34%,且界面态密度更低。结果表明,氮化铝缓冲层对于提供高质量界面以改善先进锗MOS器件的电学性能是有效的。