Suppr超能文献

利用山羊粪便负载的镍铝水滑石催化脱氧工艺生产绿色生物燃料。

Production of green biofuel by using a goat manure supported Ni-Al hydrotalcite catalysed deoxygenation process.

作者信息

Zdainal Abidin Shajaratun Nur, Lee Hwei Voon, Juan Joon Ching, Rahman Noorsaadah Abd, Taufiq-Yap Yun Hin

机构信息

Nanotechnology & Catalysis Research Centre (Nanocat), Institute of Advance Studies, University of Malaya 50603 Kuala Lumpur Malaysia

Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia.

出版信息

RSC Adv. 2019 Jan 11;9(3):1642-1652. doi: 10.1039/c8ra07818a. eCollection 2019 Jan 9.

Abstract

The high oxygen content in natural biomass resources, such as vegetable oil or biomass-pyrolysed bio oil, is the main constraint in their implementation as a full-scale biofuel for the automotive industry. In the present study, renewable fuel with petrodiesel-like properties was produced catalytic deoxygenation of oleic acid in the absence of hydrogen (H). The deoxygenation pathway of oleic acid to bio-hydrocarbon involves decarboxylation/decarbonylation of the oxygen content from the fatty acid structure in the form of carbon dioxide (CO)/carbon monoxide (CO), with the presence of a goat manure supported Ni-Al hydrotalcite (Gm/Ni-Al) catalyst. Goat manure is an abundant bio-waste, containing a high mineral content, urea as well as cellulosic fiber of plants, which is potentially converted into activated carbon. Synthesis of Gm/Ni-Al was carried out by incorporation of pre-activated goat manure (GmA) during co-precipitation of Ni-Al catalyst with 1 : 3, 1 : 1 and 3 : 1 ratios. The physico-chemical properties of the catalysts were characterized by X-ray diffractometry (XRD), Brunauer-Emmet-Teller (BET) surface area, field emission surface electron microscopy (FESEM) and temperature program desorption ammonia (TPD-NH) analysers. The catalytic deoxygenation reaction was performed in a batch reactor and the product obtained was characterized by using gas chromatography-mass spectroscopy (GCMS) for compound composition identification as well as gas chromatography-flame ionisation detector (GC-FID) for yield and selectivity determination. The optimization and evaluation were executed using response surface methodology (RSM) in conjunction with central composite design (CCD) with 5-level-3-factors. From the RSM reaction model, it was found that the Gm/Ni-Al 1 : 1 catalysed deoxygenation reaction gives the optimum product yield of 97.9% of hydrocarbon in the range of C-C, with diesel selectivity (C: heptadecane and heptadecene compounds) of 63.7% at the optimal reaction conditions of: (1) reaction temperature: 327.14 °C, (2) reaction time: 1 h, and (3) catalyst amount: 5 wt%.

摘要

植物油或生物质热解生物油等天然生物质资源中的高含氧量,是其作为汽车行业全规模生物燃料应用的主要限制因素。在本研究中,在无氢气(H)的情况下通过油酸的催化脱氧制备了具有类石化柴油性质的可再生燃料。油酸脱氧生成生物烃的途径涉及以二氧化碳(CO)/一氧化碳(CO)形式从脂肪酸结构中脱除氧含量的脱羧/脱羰反应,反应中使用了山羊粪便负载的Ni-Al水滑石(Gm/Ni-Al)催化剂。山羊粪便是一种丰富的生物废弃物,含有高矿物质含量、尿素以及植物纤维素,有可能转化为活性炭。Gm/Ni-Al的合成是通过在共沉淀法制备Ni-Al催化剂的过程中,按1:3、1:1和3:1的比例加入预活化的山羊粪便(GmA)来进行的。通过X射线衍射仪(XRD)、布鲁诺尔-埃米特-泰勒(BET)比表面积分析仪、场发射表面电子显微镜(FESEM)和程序升温脱附氨(TPD-NH)分析仪对催化剂的物理化学性质进行了表征。催化脱氧反应在间歇式反应器中进行,所得产物通过气相色谱-质谱联用仪(GCMS)进行化合物组成鉴定,并通过气相色谱-火焰离子化检测器(GC-FID)进行产率和选择性测定。使用响应面法(RSM)结合中心复合设计(CCD)进行5水平3因素的优化和评估。从RSM反应模型中发现,在以下最佳反应条件下:(1)反应温度:327.14℃,(2)反应时间:1小时,(3)催化剂量:5 wt%,Gm/Ni-Al 1:1催化的脱氧反应得到的最佳产物产率为97.9%的C-C范围内的烃,柴油选择性(C:十七烷和十七烯化合物)为63.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa04/9059750/584277356bc9/c8ra07818a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验