Suppr超能文献

利用热效应和pH效应主动控制纳米孔中基于盐度的发电。

Active control of salinity-based power generation in nanopores using thermal and pH effects.

作者信息

Mai Van-Phung, Yang Ruey-Jen

机构信息

Department of Engineering Science, National Cheng Kung University Tainan Taiwan

出版信息

RSC Adv. 2020 May 15;10(32):18624-18631. doi: 10.1039/d0ra02329a. eCollection 2020 May 14.

Abstract

Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors (, the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors (, the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.

摘要

近年来,从盐溶液中获取蓝色能源备受关注。纳米孔中基于盐度的发电受被动因素(如纳米孔直径、纳米孔长度、纳米孔材料和孔隙密度)和主动因素(如浓度梯度、温度和pH环境)共同影响。本研究基于泊松-能斯特-普朗克方程、纳维-斯托克斯方程和传热方程进行了COMSOL多物理场数值模拟,以研究温度梯度和pH值对分别长度为100 nm和500 nm的单个二氧化硅纳米孔中扩散电压和最大功率产生的综合影响。在进行模拟时,pH值在pH 5 - 11范围内进行调整,盐度浓度梯度分别为100倍和1000倍。考虑了三种不同的热条件,即(1)等温 - 室温(298 K);(2)非对称热(低浓度储液器和高浓度储液器的温度分别为323 K和298 K);以及(3)等温 - 高温(323 K)。结果表明,产生的功率随pH值和温度条件的变化显著。特别是,非对称热条件有效提高了发电性能,因为它降低了低浓度端附近纳米孔表面的表面电荷密度,从而抑制了离子浓度极化(ICP)效应。在pH值为9 - 10的范围内,能量收集性能的改善尤为明显(比pH 7时高约100%)。总体而言,结果证实了利用主动因素提高基于盐度梯度的纳米孔系统发电性能的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d901/9053878/f942975e8f46/d0ra02329a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验