Suppr超能文献

基于径向基函数神经网络的黑头呆鱼急性毒性联合优化定量构效关系模型及其一致性建模

A joint optimization QSAR model of fathead minnow acute toxicity based on a radial basis function neural network and its consensus modeling.

作者信息

Wang Yukun, Chen Xuebo

机构信息

School of Chemical Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China

School of Electronic and Information Engineering, University of Science and Technology Liaoning No. 185, Qianshan Anshan 114051 Liaoning China

出版信息

RSC Adv. 2020 Jun 4;10(36):21292-21308. doi: 10.1039/d0ra02701d. eCollection 2020 Jun 2.

Abstract

Acute toxicity of the fathead minnow () is an important indicator to evaluate the hazards and risks of compounds in aquatic environments. The aim of our study is to explore the predictive power of the quantitative structure-activity relationship (QSAR) model based on a radial basis function (RBF) neural network with the joint optimization method to study the acute toxicity mechanism, and to develop a potential acute toxicity prediction model, for fathead minnow. To ensure the symmetry and fairness of the data splitting and to generate multiple chemically diverse training and validation sets, we used a self-organizing mapping (SOM) neural network to split the modeling dataset (containing 955 compounds) characterized by PaDEL-descriptors. After preliminary selection of descriptors the mean decrease impurity method, a hybrid quantum particle swarm optimization (HQPSO) algorithm was used to jointly optimize the parameters of RBF and select the key descriptors. We established 20 RBF-based QSAR models, and the statistical results showed that the 10-fold cross-validation results ( ) and the adjusted coefficients of determination ( ) were all great than 0.7 and 0.8, respectively. The of these models was between 0.6480 and 0.7317, and the was between 0.6563 and 0.7318. Combined with the frequency and importance of the descriptors used in RBF-based models, and the correlation between the descriptors and acute toxicity, we concluded that the water distribution coefficient, molar refractivity, and first ionization potential are important factors affecting the acute toxicity of fathead minnow. A consensus QSAR model with RBF-based models was established; this model showed good performance with = 0.9118, = 0.7632, and = 0.7430. A frequency weighted and distance (FWD)-based application domain (AD) definition method was proposed, and the outliers were analyzed carefully. Compared with previous studies the method proposed in this paper has obvious advantages and its robustness and external predictive power are also better than Xgboost-based model. It is an effective QSAR modeling method.

摘要

黑头呆鱼的急性毒性是评估水生环境中化合物危害和风险的重要指标。我们研究的目的是探索基于径向基函数(RBF)神经网络的定量构效关系(QSAR)模型的预测能力,采用联合优化方法研究急性毒性机制,并开发一个潜在的黑头呆鱼急性毒性预测模型。为确保数据拆分的对称性和公平性,并生成多个化学性质不同的训练集和验证集,我们使用自组织映射(SOM)神经网络对以PaDEL描述符为特征的建模数据集(包含955种化合物)进行拆分。在通过平均减少杂质法对描述符进行初步筛选后,使用混合量子粒子群优化(HQPSO)算法联合优化RBF的参数并选择关键描述符。我们建立了20个基于RBF的QSAR模型,统计结果表明,10倍交叉验证结果( )和调整后的决定系数( )分别均大于0.7和0.8。这些模型的 在0.6480至0.7317之间, 在0.6563至0.7318之间。结合基于RBF的模型中使用的描述符的频率和重要性,以及描述符与急性毒性之间的相关性,我们得出结论,水分配系数、摩尔折射率和第一电离势是影响黑头呆鱼急性毒性的重要因素。建立了一个基于RBF模型的共识QSAR模型;该模型表现良好, = 0.9118, = 0.7632, = 0.7430。提出了一种基于频率加权和距离(FWD)的应用域(AD)定义方法,并对异常值进行了仔细分析。与先前的研究相比,本文提出的方法具有明显优势,其稳健性和外部预测能力也优于基于Xgboost的模型。它是一种有效的QSAR建模方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aace/9054390/d36c90632ee1/d0ra02701d-f1.jpg

相似文献

2
QSPR model for Caco-2 cell permeability prediction using a combination of HQPSO and dual-RBF neural network.
RSC Adv. 2020 Nov 26;10(70):42938-42952. doi: 10.1039/d0ra08209k. eCollection 2020 Nov 23.
3
Machine learning-based prediction of toxicity of organic compounds towards fathead minnow.
RSC Adv. 2020 Oct 1;10(59):36174-36180. doi: 10.1039/d0ra05906d. eCollection 2020 Sep 28.
4
A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
SAR QSAR Environ Res. 2015;26(3):217-43. doi: 10.1080/1062936X.2015.1018938.
5
Prediction of acute toxicity to and interspecific correlation: a global QSAR model and a -minnow QTTR model.
SAR QSAR Environ Res. 2022 Aug;33(8):583-600. doi: 10.1080/1062936X.2022.2098814. Epub 2022 Jul 21.
7
QSAR study of the acute toxicity to fathead minnow based on a large dataset.
SAR QSAR Environ Res. 2016;27(2):147-64. doi: 10.1080/1062936X.2015.1137353.
9
CORAL: QSAR models for acute toxicity in fathead minnow (Pimephales promelas).
J Comput Chem. 2012 May 5;33(12):1218-23. doi: 10.1002/jcc.22953. Epub 2012 Feb 27.
10
QSAR model for predicting the toxicity of organic compounds to fathead minnow.
Environ Sci Pollut Res Int. 2018 Dec;25(35):35420-35428. doi: 10.1007/s11356-018-3434-8. Epub 2018 Oct 22.

引用本文的文献

2
Prior Knowledge for Predictive Modeling: The Case of Acute Aquatic Toxicity.
J Chem Inf Model. 2022 Sep 12;62(17):4018-4031. doi: 10.1021/acs.jcim.1c01079. Epub 2022 Aug 23.
3
QSPR model for Caco-2 cell permeability prediction using a combination of HQPSO and dual-RBF neural network.
RSC Adv. 2020 Nov 26;10(70):42938-42952. doi: 10.1039/d0ra08209k. eCollection 2020 Nov 23.

本文引用的文献

2
Systematic Modeling of log  Based on Ensemble Machine Learning, Group Contribution, and Matched Molecular Pair Analysis.
J Chem Inf Model. 2020 Jan 27;60(1):63-76. doi: 10.1021/acs.jcim.9b00718. Epub 2020 Jan 10.
4
QSAR and molecular docking studies of lethal factor protease inhibitors against .
SAR QSAR Environ Res. 2019 Oct;30(10):715-731. doi: 10.1080/1062936X.2019.1658219. Epub 2019 Sep 26.
6
A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints.
Nanotoxicology. 2018 Dec;12(10):1148-1165. doi: 10.1080/17435390.2018.1504998. Epub 2018 Sep 5.
7
A QSAR-based mechanistic study on the combined toxicity of antibiotics and quorum sensing inhibitors against Escherichia coli.
J Hazard Mater. 2018 Jan 5;341:438-447. doi: 10.1016/j.jhazmat.2017.07.059. Epub 2017 Jul 30.
8
Modeling Aquatic Toxicity through Chromatographic Systems.
Anal Chem. 2017 Aug 1;89(15):7996-8003. doi: 10.1021/acs.analchem.7b01301. Epub 2017 Jul 13.
9
QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity.
Eur J Med Chem. 2017 Sep 8;137:126-138. doi: 10.1016/j.ejmech.2017.05.026. Epub 2017 May 10.
10
Beware of Unreliable Q! A Comparative Study of Regression Metrics for Predictivity Assessment of QSAR Models.
J Chem Inf Model. 2016 Oct 24;56(10):1905-1913. doi: 10.1021/acs.jcim.6b00277. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验