Suppr超能文献

基于深度VGG-16 AdaBoost混合分类器的经阴道超声、磁共振扩散加权成像及多层螺旋CT联合诊断子宫内膜癌的临床价值分析

Clinical Value Analysis of Combined Vaginal Ultrasound, Magnetic Resonance Dispersion Weighted Imaging, and Multilayer Spiral CT in the Diagnosis of Endometrial Cancer Using Deep VGG-16 AdaBoost Hybrid Classifier.

作者信息

Wang Xiaoyi, Zhang Rong

机构信息

Department of Function, Changzhou Geriatric Hospital Affiliated to Suzhou University, Changzhou Seventh People's Hospital, Changzhou, 213000 Jiangsu, China.

出版信息

J Oncol. 2022 Apr 26;2022:7677004. doi: 10.1155/2022/7677004. eCollection 2022.

Abstract

Endometrial carcinoma is one of the most common disorders of the female reproductive system. Every year, around 76,000 women die from endometrial cancer around the world. Endometrial cancer is a significant factor in women's health, particularly in industrialized nations, where the prevalence of this tumor type is the greatest. It is an important concern in women's health because of disease mortality and the rising number of new diagnoses. The aim of the study was to investigate the clinical value of combined transvaginal ultrasound, magnetic resonance dispersion weighted imaging, and multilayer spiral computed tomography (CT) in the diagnosis of early-stage endometrial cancer. Initially, the dataset is collected that consisted of a total of 100 cases and split into the control group and experimental group of 50 cases in each group. The control group is diagnosed using conventional Doppler ultrasound diagnostic machine. The experimental group is diagnosed with combined ultrasound method. The ultrasound images thus obtained are preprocessed using the speckle-free adaptive wiener filter. The preprocessed images are segmented using the fuzzy clustering segmentation method. The features are extracted by the independent component analysis (ICA) method. We have proposed the deep VGG-16 AdaBoost hybrid classifier for classifying the normal and abnormal images. The clinical value of the diagnosis is analyzed using the parameters like diagnostic accuracy, specificity, sensitivity, and kappa coefficient. It is observed that the clinical value is better for the experimental group than the control group.

摘要

子宫内膜癌是女性生殖系统最常见的疾病之一。每年,全球约有76000名女性死于子宫内膜癌。子宫内膜癌是影响女性健康的一个重要因素,尤其是在工业化国家,这种肿瘤类型的患病率最高。由于疾病死亡率和新诊断病例数量的不断上升,它是女性健康领域的一个重要关注点。本研究的目的是探讨经阴道超声、磁共振扩散加权成像和多层螺旋计算机断层扫描(CT)联合应用在早期子宫内膜癌诊断中的临床价值。最初,收集了总共100例病例的数据集,并将其分为对照组和实验组,每组各50例。对照组使用传统多普勒超声诊断仪进行诊断。实验组采用联合超声方法进行诊断。对由此获得的超声图像使用无斑点自适应维纳滤波器进行预处理。使用模糊聚类分割方法对预处理后的图像进行分割。通过独立成分分析(ICA)方法提取特征。我们提出了深度VGG - 16 AdaBoost混合分类器用于对正常图像和异常图像进行分类。使用诊断准确性、特异性、敏感性和kappa系数等参数分析诊断的临床价值。观察到实验组的临床价值优于对照组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/452a/9064493/e98880988f3f/JO2022-7677004.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验