Moualhi Y, M'nassri R, Rahmouni H, Gassoumi M, Khirouni K
Unité de Recherche Matériaux Avancés et Nanotechnologies (URMAN), Institut Supérieur des Sciences Appliquées et de Technologie de Kasserine, Université de Kairouan BP 471 1200 Kasserine Tunisia
Departement of Physics, College of Sciences, Qassim University Saudi Arabia.
RSC Adv. 2020 Sep 11;10(56):33868-33878. doi: 10.1039/d0ra03982a. eCollection 2020 Sep 10.
Electrical properties of PrCaMnXO (X = Co, Ni, Cr and Fe) systems have been investigated using impedance spectroscopy measurements. The reported results confirmed the role of cationic disorder on the transport properties of the doped PrCaMnO system. For the case of the substitution by Co and Ni and Fe transition metals, the lower temperature side has been marked by the activation of the hopping conductivity over the nearest sites. Moreover, the Shklovskii-Efros-variable range hopping conductivity mechanism has been observed in the case of the substitution by Cr element. In the high temperature range, the evolution of the resistance with temperature confirmed the activation of a hopping process. In such a temperature range, the conduction process of all the studied compounds is dominated by a thermally activated small polaron hopping mechanism. For the PrCaMnCrO compound, AC studies have confirmed that the electrical conductance should be investigated in terms of an activated quantum mechanical tunneling process. At higher frequencies, the PrCaMnFeO compound is characterized by the existence of a high frequency plateau. For the PrCaMnFeO ceramic, the dispersive region of the spectrum has confirmed the activation of the correlated barrier hopping mechanism. Thus, the conductance is found to follow the double Jonscher power law only for the temperature range of [80 K, 200 K]. For the PrCaMnNiO compound, the evolution of the frequency exponent has confirmed the activation of two conduction mechanisms. The non small polaron tunneling mechanism was activated at lower temperatures. Accordingly, the activation of the correlated barrier hopping mechanism was detected for the high temperature range. For PrCaMnCoO manganite, the coexistence of two conduction mechanisms (correlated barrier hopping and the non small polaron tunneling) is noticed. The latter's were activated in the whole of the explored temperature range. Using the scaling model, the spectra of both PrCaMnCrO and PrCaMnNiO compounds merge into a single master curve, which confirms the validity of the time temperature superposition principle.
利用阻抗谱测量研究了PrCaMnXO(X = Co、Ni、Cr和Fe)体系的电学性质。报道的结果证实了阳离子无序对掺杂PrCaMnO体系输运性质的作用。对于用Co、Ni和Fe过渡金属进行替代的情况,低温侧的特征是最近邻位点上跳跃传导的激活。此外,在Cr元素替代的情况下观察到了Shklovskii-Efros可变范围跳跃传导机制。在高温范围内,电阻随温度的变化证实了跳跃过程的激活。在这样的温度范围内,所有研究化合物的传导过程都由热激活小极化子跳跃机制主导。对于PrCaMnCrO化合物,交流研究证实应根据激活的量子力学隧穿过程来研究电导率。在较高频率下,PrCaMnFeO化合物的特征是存在高频平台。对于PrCaMnFeO陶瓷,光谱的色散区域证实了相关势垒跳跃机制的激活。因此,仅在[80 K,200 K]温度范围内发现电导率遵循双琼舍尔幂律。对于PrCaMnNiO化合物,频率指数的变化证实了两种传导机制的激活。低温下激活了非小极化子隧穿机制。相应地,在高温范围内检测到了相关势垒跳跃机制的激活。对于PrCaMnCoO锰酸盐,注意到两种传导机制(相关势垒跳跃和非小极化子隧穿)共存。后者在整个探索温度范围内被激活。使用标度模型,PrCaMnCrO和PrCaMnNiO化合物的光谱合并为一条单一的主曲线,这证实了时间温度叠加原理的有效性。