Moualhi Y, Smari M, Rahmouni H
Unité de Recherche Matériaux Avancés et Nanotechnologies (URMAN), Institut Supérieur des Sciences Appliquées et de Technologie de Kasserine, Université de Kairouan 1200 Kasserine BP 471 Tunisia
A. Chełkowski Institute of Physics, University of Silesia in Katowice 75 Pułku Piechoty 1 Chorzów 41-500 Poland.
RSC Adv. 2023 Oct 13;13(43):30010-30021. doi: 10.1039/d3ra05747j. eCollection 2023 Oct 11.
The present work proposes the best realistic theoretical approaches to examine the experimental conductivity data taken for LaCaMnNbO. For this purpose, we comprehensively discussed the structural, microstructural, and electrical properties of the LaCaMnNbO perovskite. Both X-ray diffraction and Rietveld analysis show the orthorhombic structure of the ceramic. Scanning electron microscope showed the existence of well-defined irregularly shaped particles with a grain-size distribution of 0.843 μm. The X-ray photoemission spectroscopy reveals the existence of Mn and Mn states. The complicated behavior of the lanthanum states is demonstrated using the La3d line. AC-conductivity responses are related to the correlated barrier hopping contribution. At high temperatures, the compound's semiconductor behavior is attributed to the activation of the polaronic transport. At low temperatures, the occurrence of semiconductor behavior in the LaCaMnNbO ceramic is attributed to the effect of the variable range hopping conduction process. The application of the time-temperature-superposition-principle and the Summerfield scaling formalisms leads to the superposition of the isotherms. Using the Ghosh formalism, the superposition of the spectra confirms that the number density and the hopping distance are temperature-dependent. The superposition of the spectra suggested the temperature-independent relaxation and polaronic processes. In addition, it confirms that the relaxation mechanism is independent of the microstructure response.
本工作提出了最佳的现实理论方法来检验为LaCaMnNbO获取的实验电导率数据。为此,我们全面讨论了LaCaMnNbO钙钛矿的结构、微观结构和电学性质。X射线衍射和Rietveld分析均表明该陶瓷具有正交结构。扫描电子显微镜显示存在形状明确的不规则颗粒,其粒度分布为0.843μm。X射线光电子能谱揭示了Mn和Mn态的存在。利用La3d线展示了镧态的复杂行为。交流电导率响应与相关势垒跳跃贡献有关。在高温下,该化合物的半导体行为归因于极化子输运的激活。在低温下,LaCaMnNbO陶瓷中半导体行为的出现归因于可变范围跳跃传导过程的影响。时间-温度叠加原理和Summerfield标度形式的应用导致等温线的叠加。使用Ghosh形式,光谱的叠加证实了数密度和跳跃距离与温度有关。光谱的叠加表明弛豫和极化子过程与温度无关。此外,它证实了弛豫机制与微观结构响应无关。