Moualhi Y, Alamri Mona A, El Kossi S, Dhahri R, Al-Syadi A M, Elkenany Elkenany Brens, Rahmouni H
Laboratoire de recherche Matériaux Avancés et Nanotechnologies (LRMAN), Institut Supérieur des Sciences Appliquées et de Technologie de Kasserine, Université de Kairouan BP 471 Kasserine 1200 Tunisia
Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia.
RSC Adv. 2024 Sep 16;14(40):29271-29281. doi: 10.1039/d4ra05067c. eCollection 2024 Sep 12.
This article reveals the crucial structural, magnetic, and electrical properties of LaSrNaMnTiO (LSNMTO) manganite, highlighting the significance of this material in the field of materials science. Gain a deeper understanding of the promising properties of LSNMTO and its potential for technological advancement by delving into this informative article. The X-ray diffraction data of the LSNMTO indicate that this ceramic solid solution crystallizes in the 3̄ rhombohedral structure. The magnetic results confidently demonstrate that the LSNMTO ceramic undergoes a transition from paramagnetic to ferromagnetic phases around 125 K. This significant finding could pave the way for further progress in the field of materials science. The DC conductivity response confirms the semiconductor nature of the elaborated compound over the studied temperature domain. Such behavior is linked to the contribution of the small polaron hopping mechanism at elevated temperatures and the Shklovskii Efros variable range hopping process at low temperatures. In the limit of the AC regime, the temperature-dependent AC conductivity confirms the appearance of a metal-semiconductor behavior at = 120 K that confirms the strong correlations between the transport and the magnetic properties of the sample. Over the explored temperature domain, the conductivity spectra follow a power law-like behavior. The scaled conductivity curve of LSNMTO is not superimposed on the particle grains' restricted reaction area. The Summerfield scaling of the electrical conductivity confirms with confidence the significant contribution of carrier concentration to the overall conduction of the material.
本文揭示了镧锶钠锰钛氧化物(LSNMTO)锰酸盐的关键结构、磁性和电学性质,突出了该材料在材料科学领域的重要性。通过深入研读这篇内容丰富的文章,更深入地了解LSNMTO的优异性能及其在技术进步方面的潜力。LSNMTO的X射线衍射数据表明,这种陶瓷固溶体结晶为三方菱面体结构。磁性结果有力地证明,LSNMTO陶瓷在约125K时经历从顺磁相到铁磁相的转变。这一重要发现可能为材料科学领域的进一步发展铺平道路。直流电导率响应证实了在所研究的温度范围内所制备化合物的半导体性质。这种行为与高温下小极化子跳跃机制以及低温下什克洛夫斯基-埃弗罗斯变程跳跃过程的贡献有关。在交流 regime的极限情况下,与温度相关的交流电导率证实了在120K时出现金属-半导体行为,这证实了样品的输运性质和磁性之间的强相关性。在所探索的温度范围内,电导率谱遵循类似幂律的行为。LSNMTO的标度电导率曲线并未叠加在颗粒晶粒的受限反应区域上。电导率的萨默菲尔德标度有力地证实了载流子浓度对材料整体传导的重要贡献。