Suppr超能文献

基于超像素向量场一致性的无纹理内镜图像特征匹配

Feature matching for texture-less endoscopy images via superpixel vector field consistency.

作者信息

Liu Shiyuan, Fan Jingfan, Ai Danni, Song Hong, Fu Tianyu, Wang Yongtian, Yang Jian

机构信息

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.

School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.

出版信息

Biomed Opt Express. 2022 Mar 18;13(4):2247-2265. doi: 10.1364/BOE.450259. eCollection 2022 Apr 1.

Abstract

Feature matching is an important technology to obtain the surface morphology of soft tissues in intraoperative endoscopy images. The extraction of features from clinical endoscopy images is a difficult problem, especially for texture-less images. The reduction of surface details makes the problem more challenging. We proposed an adaptive gradient-preserving method to improve the visual feature of texture-less images. For feature matching, we first constructed a spatial motion field by using the superpixel blocks and estimated its information entropy matching with the motion consistency algorithm to obtain the initial outlier feature screening. Second, we extended the superpixel spatial motion field to the vector field and constrained it with the vector feature to optimize the confidence of the initial matching set. Evaluations were implemented on public and undisclosed datasets. Our method increased by an order of magnitude in the three feature point extraction methods than the original image. In the public dataset, the accuracy and F1-score increased to 92.6% and 91.5%. The matching score was improved by 1.92%. In the undisclosed dataset, the reconstructed surface integrity of the proposed method was improved from 30% to 85%. Furthermore, we also presented the surface reconstruction result of differently sized images to validate the robustness of our method, which showed high-quality feature matching results. Overall, the experiment results proved the effectiveness of the proposed matching method. This demonstrates its capability to extract sufficient visual feature points and generate reliable feature matches for 3D reconstruction and meaningful applications in clinical.

摘要

特征匹配是获取术中内窥镜图像中软组织表面形态的一项重要技术。从临床内窥镜图像中提取特征是一个难题,尤其是对于无纹理的图像。表面细节的减少使这个问题更具挑战性。我们提出了一种自适应梯度保留方法来改善无纹理图像的视觉特征。对于特征匹配,我们首先使用超像素块构建一个空间运动场,并通过运动一致性算法估计其信息熵匹配,以获得初始离群特征筛选。其次,我们将超像素空间运动场扩展到向量场,并用向量特征对其进行约束,以优化初始匹配集的置信度。在公开和未公开的数据集上进行了评估。我们的方法在三种特征点提取方法中比原始图像提高了一个数量级。在公开数据集中,准确率和F1分数分别提高到92.6%和91.5%。匹配分数提高了1.92%。在未公开的数据集中,所提方法的重建表面完整性从30%提高到了85%。此外,我们还展示了不同大小图像的表面重建结果,以验证我们方法的鲁棒性,结果显示出高质量的特征匹配结果。总体而言,实验结果证明了所提匹配方法的有效性。这表明它有能力提取足够的视觉特征点,并为三维重建和临床中有意义的应用生成可靠的特征匹配。

相似文献

5
A Novel Neural Network for Remote Sensing Image Matching.一种用于遥感图像匹配的新型神经网络。
IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2853-2865. doi: 10.1109/TNNLS.2018.2888757. Epub 2019 Jan 16.
6
A Superpixel-Based Variational Model for Image Colorization.一种基于超像素的图像上色变分模型。
IEEE Trans Vis Comput Graph. 2020 Oct;26(10):2931-2943. doi: 10.1109/TVCG.2019.2908363. Epub 2019 Mar 29.

本文引用的文献

5
A Real-Time 3D Laparoscopic Imaging System: Design, Method, and Validation.实时三维腹腔镜成像系统:设计、方法与验证。
IEEE Trans Biomed Eng. 2020 Sep;67(9):2683-2695. doi: 10.1109/TBME.2020.2968488. Epub 2020 Jan 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验