Deng Xia, Zhang Hong, Zhang Junwei, Lei Dongsheng, Peng Yong
School of Life Sciences, Electron Microscopy Center of Lanzhou University Lanzhou 730000 P. R. China.
Electron Microscopy Centre of Lanzhou University, Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education and School of Physical Science and Technology, Lanzhou University Lanzhou 730000 P. R. China
RSC Adv. 2020 Dec 9;10(71):43825-43833. doi: 10.1039/d0ra08319d. eCollection 2020 Nov 27.
Hybridizing hierarchical porous transition oxides composed of nanoscale building blocks is highly desirable for improving the electrochemical performance of energy storage. Herein, we contribute a fabrication of novel hierarchically nanoporous flower-shaped metal/transition oxide (Co/CoO-CoO) with controllable three-dimensional structure. The designed Co/CoO-CoO 3D flowers (3DFs) are made of petal-shaped nanoporous CoO-CoO nanosheets with tunable pore sizes, in which metallic Co nanoparticles tend to attach to the edge of larger ones. The hierarchically nanoporous 3DFs with bimodal pore size distribution and higher fraction of small nanopores exhibit a higher specific capacitance (902.3 F g at current density of 2 A g) and better cyclability than the uniformly nanoporous 3DFs with unimodal pore size distribution and larger BET surface area. The enhanced capacitance is mainly derived from the synergistic effect of hierarchical nanopores, in which large nanopores disproportionately facilitate osmotic solution flux and diffusive solute transport, whilst small nanopores supply faster channels for electron transportation and ion diffusion. Our work should provide a strategy to fabricate a smart functional hierarchical nanoporous architecture with 3DF structures for the development of electrochemical energy storage materials.
由纳米级结构单元组成的分级多孔过渡氧化物的杂化对于提高储能的电化学性能非常有必要。在此,我们贡献了一种具有可控三维结构的新型分级纳米多孔花状金属/过渡氧化物(Co/CoO-CoO)的制备方法。所设计的Co/CoO-CoO三维花状结构(3DFs)由具有可调孔径的花瓣状纳米多孔CoO-CoO纳米片制成,其中金属Co纳米颗粒倾向于附着在较大纳米片的边缘。与具有单峰孔径分布和较大BET表面积的均匀纳米多孔3DFs相比,具有双峰孔径分布和更高比例小纳米孔的分级纳米多孔3DFs表现出更高的比电容(在2 A g电流密度下为902.3 F g)和更好的循环稳定性。增强的电容主要源于分级纳米孔的协同效应,其中大纳米孔极大地促进了渗透溶液通量和扩散溶质传输,而小纳米孔为电子传输和离子扩散提供了更快的通道。我们的工作应为开发用于电化学储能材料的具有3DF结构的智能功能分级纳米多孔结构提供一种策略。