Suppr超能文献

由于脱水离子之间的增强配对和碰撞,纳米孔中的离子迁移率大大降低。

Drastically Reduced Ion Mobility in a Nanopore Due to Enhanced Pairing and Collisions between Dehydrated Ions.

机构信息

Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China.

China Education Council Key Laboratory of MEMS , Southeast University , Nanjing 210096 , China.

出版信息

J Am Chem Soc. 2019 Mar 13;141(10):4264-4272. doi: 10.1021/jacs.8b08488. Epub 2019 Feb 26.

Abstract

Ion transport through nanopores is a process of fundamental significance in nature and in engineering practice. Over the past decade, it has been found that the ion conductivity in nanopores could be drastically enhanced, and different mechanisms have been proposed to explain this observation. To date, most reported studies have been carried out with relatively dilute electrolytes, while ion transport in nanopores under high electrolyte concentrations (>1 M) has been rarely explored. Through systematic experimental and atomistic simulation studies with NaCl solutions, here we show that at high electrolyte concentrations, ion mobility in small nanopores could be significantly reduced from the corresponding bulk value. Subsequent molecular dynamics studies indicate that in addition to the low mobility of surface-bound ions in the Stern layer, enhanced pairing and collisions between partially dehydrated ions of opposite charges also make important contributions to the reduced ion mobility. Furthermore, we show that the extent of mobility reduction depends on the association constant between cations and anions in different electrolytes with a more drastic reduction for a larger association constant.

摘要

离子通过纳米孔的传输是自然界和工程实践中具有重要意义的过程。在过去的十年中,人们发现纳米孔中的离子电导率可以大幅提高,并且已经提出了不同的机制来解释这一观察结果。迄今为止,大多数报道的研究都是在相对稀的电解质中进行的,而在高电解质浓度(>1 M)下纳米孔中的离子传输则很少被探索。通过对 NaCl 溶液进行系统的实验和原子模拟研究,我们表明在高电解质浓度下,小纳米孔中的离子迁移率可以从相应的体相值显著降低。随后的分子动力学研究表明,除了 Stern 层中表面结合离子的低迁移率外,带相反电荷的部分去水化离子之间的增强配对和碰撞也对离子迁移率的降低做出了重要贡献。此外,我们还表明,迁移率的降低程度取决于不同电解质中阳离子和阴离子之间的缔合常数,对于较大的缔合常数,降低程度更为剧烈。

相似文献

1
Drastically Reduced Ion Mobility in a Nanopore Due to Enhanced Pairing and Collisions between Dehydrated Ions.
J Am Chem Soc. 2019 Mar 13;141(10):4264-4272. doi: 10.1021/jacs.8b08488. Epub 2019 Feb 26.
2
MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells.
Comput Math Methods Med. 2016;2016:2787382. doi: 10.1155/2016/2787382. Epub 2016 Jun 30.
3
4
Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
Phys Chem Chem Phys. 2012 May 7;14(17):5935-44. doi: 10.1039/c2cp00013j. Epub 2012 Mar 22.
5
6
Aqueous electrolytes confined within functionalized silica nanopores.
J Chem Phys. 2011 Sep 14;135(10):104503. doi: 10.1063/1.3632050.
8
Dynamics of ion migration in nanopores and the effect of DNA-ion interaction.
J Phys Chem B. 2011 Sep 15;115(36):10699-706. doi: 10.1021/jp111111u. Epub 2011 Aug 18.
9
Designing biomimetic pores based on carbon nanotubes.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6939-44. doi: 10.1073/pnas.1119326109. Epub 2012 Apr 16.
10
Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.
J Phys Chem B. 2013 Oct 3;117(39):11633-40. doi: 10.1021/jp401722g. Epub 2013 Sep 19.

引用本文的文献

1
On the Physical Origins of Reduced Ionic Conductivity in Nanoconfined Electrolytes.
ACS Nano. 2025 Apr 8;19(13):13191-13201. doi: 10.1021/acsnano.4c18956. Epub 2025 Mar 25.
2
Bimodal Ionic Conduction through Polymer Films due to Nano Confinement.
Angew Chem Int Ed Engl. 2025 Apr 17;64(17):e202423548. doi: 10.1002/anie.202423548. Epub 2025 Mar 6.
3
Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry.
Nat Commun. 2025 Feb 5;16(1):1089. doi: 10.1038/s41467-025-56052-0.
4
5
Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins.
Sci Adv. 2024 Sep 6;10(36):eado8081. doi: 10.1126/sciadv.ado8081.
7
A Simple Cost-Effective Method to Fabricate Single Nanochannels by Embedding Electrospun Polyethylene Oxide Nanofibers.
ChemistryOpen. 2024 Aug;13(8):e202400008. doi: 10.1002/open.202400008. Epub 2024 Mar 21.
8
Synergistic effect of hierarchical nanopores in Co-doped cobalt oxide 3D flowers for electrochemical energy storage.
RSC Adv. 2020 Dec 9;10(71):43825-43833. doi: 10.1039/d0ra08319d. eCollection 2020 Nov 27.
9
Size and density adjustment of nanostructures in nanochannels for screening performance improvement.
RSC Adv. 2021 Jan 11;11(4):2325-2328. doi: 10.1039/d0ra10097h. eCollection 2021 Jan 6.
10
The Influence of Nanoconfinement on Electrocatalysis.
Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202200755. doi: 10.1002/anie.202200755. Epub 2022 May 31.

本文引用的文献

1
Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores.
Nano Lett. 2017 Aug 9;17(8):4719-4724. doi: 10.1021/acs.nanolett.7b01399. Epub 2017 Jul 12.
2
Single-layer MoS2 nanopores as nanopower generators.
Nature. 2016 Aug 11;536(7615):197-200. doi: 10.1038/nature18593. Epub 2016 Jul 13.
3
Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins.
Nat Nanotechnol. 2016 Jul;11(7):639-44. doi: 10.1038/nnano.2016.43. Epub 2016 Apr 4.
4
Observation of ionic Coulomb blockade in nanopores.
Nat Mater. 2016 Aug;15(8):850-5. doi: 10.1038/nmat4607. Epub 2016 Mar 28.
5
The promises and challenges of solid-state sequencing.
Nat Nanotechnol. 2016 Feb;11(2):109-11. doi: 10.1038/nnano.2016.9.
6
Water desalination with a single-layer MoS2 nanopore.
Nat Commun. 2015 Oct 14;6:8616. doi: 10.1038/ncomms9616.
7
Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores.
Nat Nanotechnol. 2015 Dec;10(12):1053-7. doi: 10.1038/nnano.2015.222. Epub 2015 Oct 5.
8
Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022719. doi: 10.1103/PhysRevE.92.022719. Epub 2015 Aug 24.
9
Ultimate permeation across atomically thin porous graphene.
Science. 2014 Apr 18;344(6181):289-92. doi: 10.1126/science.1249097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验