Song Yu, Zhang Mingyue, Liu Tianyu, Li Tianjiao, Guo Di, Liu Xiao-Xia
Department of Chemistry, Northeastern University, Shenyang 110819, China.
Department of Chemistry, Virginia Tech, Blacksburg, VA 24060, USA.
Nanomaterials (Basel). 2019 Aug 2;9(8):1110. doi: 10.3390/nano9081110.
Pyrolyzing metal-organic frameworks (MOFs) typically yield composites consisting of metal/metal oxide nanoparticles finely dispersed on carbon matrices. The blend of pseudocapacitive metal oxides and conductive metals, as well as highly porous carbon networks, offer unique opportunities to obtain supercapacitor electrodes with mutually high capacitances and excellent rate capabilities. Herein, we demonstrate nitrogen-doped carbon nanocuboid arrays grown on carbon fibers and incorporating cobalt metal and cobalt metal oxides. This composite was synthesized via pyrolysis of a chemical bath deposited MOF, cobalt-containing zeolite imidazole framework (Co-ZIF). The active materials for charge storage are the cobalt oxide and nitrogen-doped carbon. Additionally, the Co metal and the nanoporous carbon network facilitated electron transport and the rich nanopores in each nanocuboid shortened ion diffusion distance. Benefited from these merits, our Co-ZIF-derived electrode delivered an areal capacitance of 1177 mF cm and excellent cycling stability of ~94% capacitance retained after 20,000 continuous charge-discharge cycles. An asymmetric supercapacitor prototype having the Co-ZIF-derived hybrid material (positive electrode) and activated carbon (negative electrode) achieved a maximal volumetric energy density of 1.32 mWh cm and the highest volumetric power density of 376 mW cm. This work highlights the promise of metal-metal oxide-carbon nanostructured composites as electrodes in electrochemical energy storage devices.
热解金属有机框架材料(MOFs)通常会产生由精细分散在碳基质上的金属/金属氧化物纳米颗粒组成的复合材料。赝电容金属氧化物与导电金属的混合,以及高度多孔的碳网络,为获得具有相互高电容和优异倍率性能的超级电容器电极提供了独特的机会。在此,我们展示了生长在碳纤维上并包含钴金属和钴金属氧化物的氮掺杂碳纳米立方体阵列。这种复合材料是通过化学浴沉积的MOF——含钴沸石咪唑框架(Co-ZIF)的热解合成的。用于电荷存储的活性材料是氧化钴和氮掺杂碳。此外,钴金属和纳米多孔碳网络促进了电子传输,每个纳米立方体中丰富的纳米孔缩短了离子扩散距离。受益于这些优点,我们的Co-ZIF衍生电极的面积电容为1177 mF/cm²,在连续20000次充放电循环后保持了约94%的电容,具有出色的循环稳定性。具有Co-ZIF衍生混合材料(正极)和活性炭(负极)的不对称超级电容器原型实现了1.32 mWh/cm³的最大体积能量密度和376 mW/cm³的最高体积功率密度。这项工作突出了金属-金属氧化物-碳纳米结构复合材料作为电化学储能器件电极的前景。