Souissi Salma, Gabsi Wahiba, Echaieb Abderraouf, Roger Julien, Hierso Jean-Cyrille, Fleurat-Lessard Paul, Boubaker Taoufik
Université de Monastir, Faculté des Sciences, Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39) Avenue de l'Environnement 5019 Monastir Tunisia
Institut de Chimie Moléculaire de l'Université de Bourgogne (UMR-CNRS 6302), Université Bourgogne Franche-Comté (UBFC) 9 Avenue Alain Savary 21078 Dijon France
RSC Adv. 2020 Aug 3;10(48):28635-28643. doi: 10.1039/d0ra06324j.
The course of organic chemical reactions is efficiently modelled through the concepts of "electrophiles" and "nucleophiles" (meaning electron-seeking and nucleus-seeking reactive species). On the one hand, an advanced approach of the correlation of the nucleophilicity parameters and electrophilicity has been delivered from the linear free energy relationship log (20 °C) = ( + ). On the other hand, the general influence of the solvent mixtures, which are very often employed in preparative synthetic chemistry, has been poorly explored theoretically and experimentally, to date. Herein, we combined experimental and theoretical studies of the solvent influence on pyrrolidine nucleophilicity. We determined the nucleophilicity parameters and of pyrrolidine at 20 °C in CHOH/CHCN mixtures containing 0, 20, 40, 60, 80 and 100% CHCN by kinetic investigations of their nucleophilic substitution reactions to a series of 2-methoxy-3-X-5-nitrothiophenes 1a-e (X = NO, CN, COCH, COCH, CONH). Depending on the resulting solvation medium, the parameters range from 15.72 to 18.32 on the empirical nucleophilicity scale of Mayr. The nucleophilicity parameters first evolve linearly with the content of acetonitrile up to 60% CHCN by volume, but is non linear for higher amounts. We designed a general computation protocol to investigate the solvent effect at the atomistic scale. The nucleophilicity in solvent mixtures was evaluated by combining classical molecular dynamic (MD) simulations of solvated pyrrolidine and a few density functional theory (DFT) calculations of Parr nucleophilicity. The pyrrolidine theoretical nucleophilicity 1/ obtained in various CHOH/CHCN mixtures are in excellent agreement with Mayr's nucleophilicity () parameters measured. Analyses of the molecular dynamic trajectories reveal that the decrease of the nucleophilicity in methanol rich mixtures arises predominantly from the solvation of the pyrrolidine by methanol molecules through strong hydrogen bonds. Last, we proposed a simple model to predict and accurately reproduce the experimentally obtained nucleophilicity values.
有机化学反应的过程可以通过“亲电试剂”和“亲核试剂”(即寻求电子和寻求原子核的活性物种)的概念进行有效建模。一方面,亲核性参数和亲电性的关联的一种先进方法是从线性自由能关系log (20 °C) = ( + )推导出来的。另一方面,制备合成化学中经常使用的溶剂混合物的一般影响,迄今为止在理论和实验上都很少被探索。在此,我们结合了对溶剂对吡咯烷亲核性影响的实验和理论研究。通过对一系列2-甲氧基-3-X-5-硝基噻吩1a-e(X = NO、CN、COCH、COCH、CONH)的亲核取代反应进行动力学研究,我们测定了在含有0、20、40、60、80和100% CHCN的CHOH/CHCN混合物中,20 °C时吡咯烷的亲核性参数和。根据所得的溶剂化介质,在Mayr的经验亲核性标度上,参数范围为15.72至18.32。亲核性参数首先随乙腈含量线性变化,直至体积分数为60%的CHCN,但含量更高时则呈非线性变化。我们设计了一个通用的计算协议来研究原子尺度上的溶剂效应。通过结合溶剂化吡咯烷的经典分子动力学(MD)模拟和一些Parr亲核性的密度泛函理论(DFT)计算,评估了溶剂混合物中的亲核性。在各种CHOH/CHCN混合物中获得的吡咯烷理论亲核性1/与测量的Mayr亲核性()参数非常吻合。分子动力学轨迹分析表明,富含甲醇的混合物中亲核性的降低主要源于甲醇分子通过强氢键对吡咯烷的溶剂化作用。最后,我们提出了一个简单的模型来预测并准确重现实验获得的亲核性值。