Zhu Qiuhong, Jiao Hua, Zhao Xiaoliang, Tang Yufei, Zhao Kang, Gou Xingchun
School of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 China.
Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology Xi'an 710048 PR China
RSC Adv. 2022 May 3;12(21):13209-13219. doi: 10.1039/d2ra00910b. eCollection 2022 Apr 28.
Porcine decellularized small intestine submucosa (SIS) is a collagen membrane, which offers great potential as an organic substrate template in mineralization processes due to its good biodegradability and biocompatibility. However, a long period of mineralization and low efficiency are apparent, and the mechanism of collagen fiber mineralization has often been neglected in the previous literature. Thus, in this paper, we present a novel model of biomimetic collagen mineralization which uses dopamine (DA) molecules with the activating and retouching function of SIS collagen membranes and regulating collagen mineralization to construct the structure of mineralized collagen hard tissues. The crystal biomimetic mineralization growth of calcium phosphate on membranes is studied in different solid-liquid interfaces with a double ion self-assembled diffusion system under the simulated physiological microenvironment. In the system, pDA@SIS membranes are used to control the concentration of Ca and PO ionic diffusion to generate supersaturation reaction conditions in 1-14 days. The system can successfully obtain polycrystals with low crystallinity on the pDA-collagen complex template surface of collagen fibers and along the collagen fibers. It initiates a generalized bionic mineralization pathway which can reduce the nucleation interfacial energy to promote rapid hydroxyapatite (HAP) nucleation and crystallization and accelerate the rate of collagen fiber mineralization. The pDA@SIS mineralized collagen membrane shows good biocompatibility with 100% cellular activity in the CCK-8 test, which significantly improved the adhesion proliferation of MC3T3-E1 cells. The pDA-SIS collagen complex, as a new type of mineralization template, may propose a new collagen mineralization strategy to produce a mineralized pDA@SIS scaffold bone-like material for tissue engineering or can potentially be applied in bone repair and regeneration.
猪脱细胞小肠黏膜下层(SIS)是一种胶原膜,由于其良好的生物降解性和生物相容性,在矿化过程中作为有机底物模板具有巨大潜力。然而,矿化周期长且效率低的问题明显,并且以往文献中常常忽略了胶原纤维矿化的机制。因此,在本文中,我们提出了一种新型的仿生胶原矿化模型,该模型使用具有激活和修饰SIS胶原膜功能并调节胶原矿化的多巴胺(DA)分子来构建矿化胶原硬组织的结构。在模拟生理微环境下,利用双离子自组装扩散系统,研究了磷酸钙在不同固液界面上在膜上的晶体仿生矿化生长。在该系统中,使用聚多巴胺修饰的SIS膜(pDA@SIS膜)控制Ca和PO离子扩散浓度,在1 - 14天内产生过饱和反应条件。该系统能够在胶原纤维的pDA - 胶原复合模板表面以及沿胶原纤维成功获得低结晶度的多晶体。它启动了一条广义的仿生矿化途径,该途径可以降低成核界面能,促进羟基磷灰石(HAP)快速成核和结晶,并加速胶原纤维矿化速率。在CCK - 8试验中,pDA@SIS矿化胶原膜显示出良好的生物相容性,细胞活性为100%,显著改善了MC3T3 - E1细胞的黏附增殖。pDA - SIS胶原复合物作为一种新型矿化模板,可能提出一种新的胶原矿化策略,以生产用于组织工程的矿化pDA@SIS支架类骨材料,或者有可能应用于骨修复和再生。