Berhaut Christopher L, Lemordant Daniel, Porion Patrice, Timperman Laure, Schmidt Grégory, Anouti Mériem
Laboratoire PCM2E (EA 6296), Université François Rabelais de Tours, UFR Sciences et Techniques Parc de Grandmont 37200 Tours France
ARKEMA rue Henri Moissan, 69493 Pierre Bénite France.
RSC Adv. 2019 Feb 6;9(8):4599-4608. doi: 10.1039/c8ra08430k. eCollection 2019 Jan 30.
New lithium salts such as lithium bis(fluorosulfonyl)imide (LiFSI) and lithium 4,5-dicyano-2-(trifluoromethyl)imidazole-1-ide (LiTDI) are now challenging lithium hexafluorophosphate (LiPF), the most used electrolyte salt in commercial Li-ion batteries. Thus it is now important to establish a comparison of these electrolyte components in a standard solvent mixture of ethylene carbonate and dimethyl carbonate (EC/DMC: 50/50 wt%). With this aim, transport properties, such as the ionic conductivity, viscosity and Li self-diffusion coefficient have been deeply investigated. Moreover, as these properties are directly linked to the nature of the interionic interactions and ion solvation, a better understanding of the structural properties of electrolytes can be obtained. The Li salt concentration has been varied over the range of 0.1 mol L to 2 mol L at 25 °C and the working temperature from 20 °C to 80 °C at the fixed concentration of 1 mol L. Experimental results were used to investigate the temperature dependence of the salt ion-pair (IP) dissociation coefficient ( ) with the help of the Walden rule and the Nernst-Einstein equation. The lithium cation effective solute radius ( ) has been determined using the Jones-Dole-Kaminsky equation coupled to the Einstein relation for the viscosity of hard spheres in solution and the Stokes-Einstein equation. From the variations of and r with the temperature, it is inferred that in EC/DMC LiFSI forms solvent-shared ion-pairs (SIP) and that, LiTDI and LiPF are likely to form solvent separated ion-pairs (SIP) or a mixture of SIP and SIP. From the temperature dependence of , thermodynamic parameters such as the standard Gibbs free energy, enthalpy and entropy for the ion-pair formation are obtained. Besides being in agreement with the information provided by the variations of and r, it is concluded that the ion-pair formation process is exergonic and endothermic for the three salts in EC/DMC.
新型锂盐,如双(氟磺酰)亚胺锂(LiFSI)和4,5-二氰基-2-(三氟甲基)咪唑-1-锂(LiTDI),正挑战着六氟磷酸锂(LiPF₆),后者是商用锂离子电池中最常用的电解质盐。因此,在碳酸乙烯酯和碳酸二甲酯的标准溶剂混合物(EC/DMC:50/50 wt%)中对这些电解质成分进行比较变得很重要。出于这个目的,人们深入研究了诸如离子电导率、粘度和锂自扩散系数等传输性质。此外,由于这些性质与离子间相互作用和离子溶剂化的性质直接相关,因此可以更好地理解电解质的结构性质。在25℃下,锂盐浓度在0.1 mol/L至2 mol/L范围内变化,在固定浓度为1 mol/L时,工作温度从20℃到80℃。实验结果借助瓦尔登规则和能斯特 - 爱因斯坦方程用于研究盐离子对(IP)解离系数( )的温度依赖性。锂阳离子有效溶质半径( )已使用琼斯 - 多尔 - 卡明斯基方程结合溶液中硬球粘度的爱因斯坦关系和斯托克斯 - 爱因斯坦方程来确定。从 和r随温度的变化可以推断,在EC/DMC中LiFSI形成溶剂共享离子对(SIP),而LiTDI和LiPF₆可能形成溶剂分离离子对(SSIP)或SIP和SSIP的混合物。从 的温度依赖性可以获得离子对形成的热力学参数,如标准吉布斯自由能、焓和熵。除了与 和r的变化所提供的信息一致外,还得出结论,在EC/DMC中,这三种盐的离子对形成过程是放能的且吸热。