Lim Kyungmi, Fenk Bernhard, Popovic Jelena, Maier Joachim
Max Planck Institute for Solid State Research, Stuttgart 70569, Germany.
ACS Appl Mater Interfaces. 2021 Nov 3;13(43):51767-51774. doi: 10.1021/acsami.1c15607. Epub 2021 Oct 20.
Despite the fact that solid electrolyte interphases (SEIs) on alkali metals (Li and Na) are of great importance in the utilization of batteries with high energy density, growth mechanism of SEIs under an open-circuit potential important for the shelf life and the nature of ionic transport through SEIs are yet poorly understood. In this work, SEIs on Li/Na formed by bringing the electrodes in contact with ether- and carbonate-based electrolyte in symmetric cells were systematically investigated using diverse electrochemical/chemical characterization techniques. Electrochemical impedance spectroscopy (EIS) measurements linked with activation energy determination and cross-section images of Li/Na electrodes measured by ex situ FIB-SEM revealed the liquid/solid composite nature of SEIs, indicating their porosity. SEIs on Na electrodes are shown to be more porous compared to the ones on Li in both carbonate and glyme-based electrolytes. Nonpassivating nature of such SEIs is detrimental for the performance of alkali metal batteries. We laid special emphasis on evaluating time-dependent activation energy using EIS.
尽管碱金属(锂和钠)上的固体电解质界面(SEI)在高能量密度电池的应用中非常重要,但对于开路电位下SEI的生长机制(这对电池的保质期很重要)以及离子通过SEI的传输性质,人们仍然了解甚少。在这项工作中,我们使用多种电化学/化学表征技术,系统地研究了在对称电池中使电极与醚基和碳酸酯基电解质接触而形成的锂/钠上的SEI。电化学阻抗谱(EIS)测量与活化能测定相关联,以及通过非原位聚焦离子束扫描电子显微镜(FIB-SEM)测量的锂/钠电极的横截面图像揭示了SEI的液/固复合性质,表明了它们的孔隙率。在基于碳酸酯和基于甘醇二甲醚的电解质中,钠电极上形成的SEI比锂电极上的SEI具有更多的孔隙。这种SEI的非钝化性质对碱金属电池的性能不利。我们特别强调使用EIS评估随时间变化的活化能。