Suppr超能文献

氧化锌修饰的二氧化锡纳米片纳米异质结构:一种在自然阳光下用于水分解和染料降解的稳定光催化剂。

ZnO decorated SnO nanosheet nano-heterostructure: a stable photocatalyst for water splitting and dye degradation under natural sunlight.

作者信息

Balgude Sagar D, Sethi Yogesh A, Kale Bharat B, Amalnerkar Dinesh P, Adhyapak Parag V

机构信息

Centre for Materials for Electronics Technology Panchawati, Pashan Road Pune 411008 India

D. Y. Patil College of Engineering Ambi Pune-410507 India.

出版信息

RSC Adv. 2019 Apr 2;9(18):10289-10296. doi: 10.1039/c9ra00788a. eCollection 2019 Mar 28.

Abstract

Herein, a facile hydrothermally-assisted sonochemical approach for the synthesis of a ZnO decorated SnO nano-heterostructure is reported. The phase purity of the nano-heterostructure was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis demonstrated a nanosheet-like structure of SnO with a thickness of 20 nm, decorated with ZnO. The optical band gap was found to be 2.60 eV for the ZnO@SnO nano-heterostructure. Photoluminescence studies revealed the suppression of electron-hole recombination in the ZnO@SnO nano-heterostructure. The potential efficiency of ZnO@SnO was further evaluated towards photocatalytic hydrogen production HO splitting and degradation of methylene blue (MB) dye. Interestingly, it showed significantly superior photocatalytic activity compared to ZnO and SnO. The complete degradation of MB dye solution was achieved within 40 min. The nano-heterostructure also exhibited enhanced photocatalytic activity towards hydrogen evolution (98.2 μmol h/0.1 g) water splitting under natural sunlight. The superior photocatalytic activity of ZnO@SnO was attributed to vacancy defects created due to its nano-heterostructure.

摘要

在此,报道了一种简便的水热辅助声化学方法用于合成ZnO修饰的SnO纳米异质结构。通过X射线衍射和拉曼光谱确认了纳米异质结构的相纯度。形态分析表明,SnO具有厚度为20nm的纳米片状结构,并由ZnO修饰。发现ZnO@SnO纳米异质结构的光学带隙为2.60eV。光致发光研究表明,ZnO@SnO纳米异质结构中电子-空穴复合受到抑制。进一步评估了ZnO@SnO对光催化产氢、水分解和亚甲基蓝(MB)染料降解的潜在效率。有趣的是,与ZnO和SnO相比,它表现出显著优异的光催化活性。MB染料溶液在40分钟内实现了完全降解。该纳米异质结构在自然阳光下对析氢(98.2μmol h/0.1g)水分解也表现出增强的光催化活性。ZnO@SnO优异的光催化活性归因于其纳米异质结构产生的空位缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96d8/9062400/2ca3f837edfd/c9ra00788a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验