Abdul Aziz Mohd Zaidan, Higashimine Koichi, Shioya Nobutaka, Shimoaka Takafumi, Hasegawa Takeshi, Sakai Heisuke, Vohra Varun, Murata Hideyuki
School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan.
RSC Adv. 2020 Oct 12;10(61):37529-37537. doi: 10.1039/d0ra05991a. eCollection 2020 Oct 7.
We elucidate the formation mechanism of adequate vertical concentration gradients in sequentially deposited poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C-butyric acid methyl ester (PCBM) bilayer solar cells. Using advanced analytical techniques, we clarify the origins of the enhanced photovoltaic performances of as-deposited and annealed bilayer P3HT/PCBM organic solar cells upon P3HT layer rubbing prior to PCBM deposition. Energy-dispersive X-ray spectroscopy reveals the individual effects of rubbing and annealing on the formation of adequate concentration gradients in the photoactive layers. Repetitive rubbing of P3HT strongly affects the active layer nanomorphology, forming an intermixed layer in the as-deposited devices which is retained after the annealing process. Infrared p-polarized multiple-angle incidence resolution spectrometry measurements indicate that rubbing induces a minor reorganization of the P3HT molecules in the polymer-only thin films towards face-on orientation. However, the deposition of the upper PCBM layer reverts the P3HT molecules back to their original orientation. These findings suggest that the formation of an adequate concentration gradient upon rubbing corresponds to the dominant contribution to the improved photovoltaic characteristics of rubbed bilayer organic solar cells. Using the reference low bandgap copolymer PCDTBT, we demonstrate that rubbing can be successfully applied to increase the photovoltaic performances of PCDTBT/PCBM organic solar cells. We also demonstrate that rubbing can be an efficient and versatile strategy to improve the power conversion efficiency of non-fullerene solar cells by using the reference materials in the field, PBDB-T and ITIC.
我们阐明了在依次沉积的聚(3-己基噻吩-2,5-二亚基)(P3HT)和苯基-C-丁酸甲酯(PCBM)双层太阳能电池中形成适当垂直浓度梯度的机制。使用先进的分析技术,我们阐明了在PCBM沉积之前对P3HT层进行摩擦后,沉积态和退火态双层P3HT/PCBM有机太阳能电池光伏性能增强的起源。能量色散X射线光谱揭示了摩擦和退火对光活性层中适当浓度梯度形成的各自影响。对P3HT进行反复摩擦会强烈影响活性层的纳米形态,在沉积态器件中形成一个混合层,该混合层在退火过程后得以保留。红外p偏振多角度入射分辨率光谱测量表明,摩擦会使仅含聚合物的薄膜中的P3HT分子向面内取向发生轻微的重新排列。然而,上层PCBM层的沉积会使P3HT分子恢复到其原始取向。这些发现表明,摩擦时形成的适当浓度梯度是摩擦双层有机太阳能电池光伏特性改善的主要贡献因素。使用参考低带隙共聚物PCDTBT,我们证明摩擦可以成功应用于提高PCDTBT/PCBM有机太阳能电池的光伏性能。我们还证明,通过使用该领域的参考材料PBDB-T和ITIC,摩擦可以成为提高非富勒烯太阳能电池功率转换效率的一种有效且通用的策略。