Heintges Gaël H L, Janssen René A J
Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Hasselt University Agoralaan 3590 Diepenbeek Belgium.
RSC Adv. 2019 May 20;9(28):15703-15714. doi: 10.1039/c9ra02670c.
Homocoupling of monomers in a palladium-catalyzed copolymerization of donor-acceptor polymers affects the perfect alternating structure and may deteriorate the performance of such materials in solar cells. Here we investigate the effect of homocoupling bis(trialkylstannyl)-thiophene and -bithiophene monomers in two low band gap poly(diketopyrrolopyrrole--oligothiophene) polymers by deliberately introducing extended oligothiophene defects in a controlled fashion. We find that extension of the oligothiophene by one or two thiophenes and creating defects up to at least 10% does not significantly affect the opto-electronic properties of the polymers or their photovoltaic performance as electron donor in solar cells in combination with [6,6]-phenyl C butytic acid methyl ester as acceptor. By using model reactions, we further demonstrate that for the optimized synthetic protocol and palladium-catalyst system the naturally occurring defect concentration in the polymers is expected to be less than 0.5%.
在给体-受体聚合物的钯催化共聚反应中,单体的均偶联会影响完美的交替结构,并可能降低此类材料在太阳能电池中的性能。在此,我们通过以可控方式故意引入扩展的低聚噻吩缺陷,研究了双(三烷基锡基)噻吩和双噻吩单体的均偶联对两种低带隙聚(二酮吡咯并吡咯-低聚噻吩)聚合物的影响。我们发现,将低聚噻吩延伸一个或两个噻吩单元,并产生高达至少10%的缺陷,并不会显著影响聚合物的光电性能或其在与[6,6]-苯基丁酸甲酯作为受体的太阳能电池中作为电子给体的光伏性能。通过使用模型反应,我们进一步证明,对于优化的合成方案和钯催化剂体系,聚合物中天然存在的缺陷浓度预计小于0.5%。