Suppr超能文献

二酮吡咯并吡咯聚合物合成中三烷基锡单体的均偶联反应及其对聚合物-富勒烯光伏电池性能的影响

On the homocoupling of trialkylstannyl monomers in the synthesis of diketopyrrolopyrrole polymers and its effect on the performance of polymer-fullerene photovoltaic cells.

作者信息

Heintges Gaël H L, Janssen René A J

机构信息

Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands

Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Hasselt University Agoralaan 3590 Diepenbeek Belgium.

出版信息

RSC Adv. 2019 May 20;9(28):15703-15714. doi: 10.1039/c9ra02670c.

Abstract

Homocoupling of monomers in a palladium-catalyzed copolymerization of donor-acceptor polymers affects the perfect alternating structure and may deteriorate the performance of such materials in solar cells. Here we investigate the effect of homocoupling bis(trialkylstannyl)-thiophene and -bithiophene monomers in two low band gap poly(diketopyrrolopyrrole--oligothiophene) polymers by deliberately introducing extended oligothiophene defects in a controlled fashion. We find that extension of the oligothiophene by one or two thiophenes and creating defects up to at least 10% does not significantly affect the opto-electronic properties of the polymers or their photovoltaic performance as electron donor in solar cells in combination with [6,6]-phenyl C butytic acid methyl ester as acceptor. By using model reactions, we further demonstrate that for the optimized synthetic protocol and palladium-catalyst system the naturally occurring defect concentration in the polymers is expected to be less than 0.5%.

摘要

在给体-受体聚合物的钯催化共聚反应中,单体的均偶联会影响完美的交替结构,并可能降低此类材料在太阳能电池中的性能。在此,我们通过以可控方式故意引入扩展的低聚噻吩缺陷,研究了双(三烷基锡基)噻吩和双噻吩单体的均偶联对两种低带隙聚(二酮吡咯并吡咯-低聚噻吩)聚合物的影响。我们发现,将低聚噻吩延伸一个或两个噻吩单元,并产生高达至少10%的缺陷,并不会显著影响聚合物的光电性能或其在与[6,6]-苯基丁酸甲酯作为受体的太阳能电池中作为电子给体的光伏性能。通过使用模型反应,我们进一步证明,对于优化的合成方案和钯催化剂体系,聚合物中天然存在的缺陷浓度预计小于0.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77e9/9064343/0275582129bd/c9ra02670c-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验