Suppr超能文献

利用阻抗测量法检测二苯基苦味酰基自由基(DPPH)分子中的L波段电子顺磁共振。

Detection of L-band electron paramagnetic resonance in the DPPH molecule using impedance measurements.

作者信息

Chaudhuri Ushnish, Mahendiran R

机构信息

Department of Physics, National University of Singapore 2 Science Drive 3 Singapore-117551 Republic of Singapore

出版信息

RSC Adv. 2020 May 5;10(29):17311-17316. doi: 10.1039/d0ra03285a. eCollection 2020 Apr 29.

Abstract

Detection of electron paramagnetic resonance (EPR) using a microwave cavity resonating at a fixed frequency (between 9 and 10 GHz) remains the most popular method to date. Here, we report a cavity-less technique which makes use of only an impedance analyzer and a copper strip coil to detect L-band EPR ( = 1-3 GHz) in the standard EPR marker 2,2-diphenyl-1-picrylhydrazyl (DPPH). Our method relies on measuring the magnetoimpedance (MI) response of DPPH through a copper strip coil that encloses DPPH. In contrast to commercial EPR which measures only the field derivative of power absorption, our method enables us to deduce both absorption and dispersion. Changes in resistance () and reactance () of the copper strip while sweeping an external dc magnetic field, were measured for different frequencies ( = 0.9 to 2.5 GHz) of radio frequency current in the coil. exhibits a sharp peak at a critical value of the dc magnetic field, which is identified as the resonance field and shows a dispersion at the same frequency. The data were analyzed to obtain line width and resonance field parameters. The resonance field increased linearly with frequency and the obtained Landé factor of 1.999 ± 0.0197 is close to the accepted value of 2.0036, measured in the X-band. The simplicity of this technique can be exploited to study paramagnetic centers in catalysis and other materials.

摘要

利用在固定频率(9至10吉赫兹之间)共振的微波腔来检测电子顺磁共振(EPR),至今仍是最常用的方法。在此,我们报告一种无腔技术,该技术仅使用阻抗分析仪和铜带线圈来检测标准EPR标记物2,2 - 二苯基 - 1 - 苦基肼(DPPH)中的L波段EPR(频率为1 - 3吉赫兹)。我们的方法依赖于通过包围DPPH的铜带线圈测量DPPH的磁阻抗(MI)响应。与仅测量功率吸收的场导数的商业EPR不同,我们的方法使我们能够推断出吸收和色散。在扫描外部直流磁场时,测量了线圈中不同频率(0.9至2.5吉赫兹)的射频电流下铜带的电阻()和电抗()的变化。在直流磁场的临界值处呈现出一个尖锐的峰值,该峰值被确定为共振场,并且在相同频率下呈现出色散。对数据进行分析以获得线宽和共振场参数。共振场随频率线性增加,获得的朗德因子为1.999 ± 0.0197,接近在X波段测量的公认值2.0036。这种技术的简单性可用于研究催化和其他材料中的顺磁中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dd0/9053404/744228f6b3c3/d0ra03285a-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验