Suppr超能文献

统一绩效模型评估:群体平均和个体化警觉性预测的准确性。

Assessment of the unified model of performance: accuracy of group-average and individualised alertness predictions.

机构信息

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, Maryland, USA.

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.

出版信息

J Sleep Res. 2023 Apr;32(2):e13626. doi: 10.1111/jsr.13626. Epub 2022 May 6.

Abstract

To be effective as a key component of fatigue-management systems, biomathematical models that predict alertness impairment as a function of time of day, sleep history, and caffeine consumption must demonstrate the ability to make accurate predictions across a range of sleep-loss and caffeine schedules. Here, we assessed the ability of the previously reported unified model of performance (UMP) to predict alertness impairment at the group-average and individualised levels in a comprehensive set of 12 studies, including 22 sleep and caffeine conditions, for a total of 301 unique subjects. Given sleep and caffeine schedules, the UMP predicted alertness impairment based on the psychomotor vigilance test (PVT) for the duration of the schedule. To quantify prediction performance, we computed the root mean square error (RMSE) between model predictions and PVT data, and the fraction of measured PVTs that fell within the models' prediction intervals (PIs). For the group-average model predictions, the overall RMSE was 43 ms (range 15-74 ms) and the fraction of PVTs within the PIs was 80% (range 41%-100%). At the individualised level, the UMP could predict alertness for 81% of the subjects, with an overall average RMSE of 64 ms (range 32-147 ms) and fraction of PVTs within the PIs conservatively estimated as 71% (range 41%-100%). Altogether, these results suggest that, for the group-average model and 81% of the individualised models, in three out of four PVT measurements we cannot distinguish between study data and model predictions.

摘要

作为疲劳管理系统的关键组成部分,预测警觉性损伤的生物数学模型作为时间、睡眠历史和咖啡因消耗的函数,必须证明能够在各种睡眠剥夺和咖啡因方案中进行准确预测。在这里,我们评估了先前报道的性能统一模型(UMP)在 12 项综合研究中的组平均和个体化水平上预测警觉性损伤的能力,这些研究包括 22 种睡眠和咖啡因条件,共涉及 301 个独特的个体。根据睡眠和咖啡因方案,UMP 根据精神运动警觉测试(PVT)预测警觉性损伤,持续时间为方案的持续时间。为了量化预测性能,我们计算了模型预测与 PVT 数据之间的均方根误差(RMSE),以及 PVT 数据落入模型预测区间(PI)的分数。对于组平均模型预测,整体 RMSE 为 43ms(范围为 15-74ms),PI 内的 PVT 分数为 80%(范围为 41%-100%)。在个体化水平上,UMP 可以预测 81%的个体的警觉性,总体平均 RMSE 为 64ms(范围为 32-147ms),PI 内的 PVT 分数保守估计为 71%(范围为 41%-100%)。总的来说,这些结果表明,对于组平均模型和 81%的个体化模型,在四分之三的 PVT 测量中,我们无法区分研究数据和模型预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验