Department of Plant Breeding, Swedish University of Agricultural Sciences, S-230 53 Alnarp, Sweden.
Plant Physiol. 2022 Aug 1;189(4):2001-2014. doi: 10.1093/plphys/kiac209.
Castor bean (Ricinus communis) seed oil (triacylglycerol [TAG]) is composed of ∼90% of the industrially important ricinoleoyl (12-hydroxy-9-octadecenoyl) groups. Here, phosphatidylcholine (PC):diacylglycerol (DAG) cholinephosphotransferase (PDCT) from castor bean was biochemically characterized and compared with camelina (Camelina sativa) PDCT. DAGs with ricinoleoyl groups were poorly used by Camelina PDCT, and their presence inhibited the utilization of DAG with "common" acyl groups. In contrast, castor PDCT utilized DAG with ricinoleoyl groups similarly to DAG with common acyl groups and showed a 10-fold selectivity for DAG with one ricinoleoyl group over DAG with two ricinoleoyl groups. Castor DAG acyltransferase2 specificities and selectivities toward different DAG and acyl-CoA species were assessed and shown to not acylate DAG without ricinoleoyl groups in the presence of ricinoleoyl-containing DAG. Eighty-five percent of the DAG species in microsomal membranes prepared from developing castor endosperm lacked ricinoleoyl groups. Most of these species were predicted to be derived from PC, which had been formed by PDCT in exchange with DAG with one ricinoleoyl group. A scheme of the function of PDCT in castor endosperm is proposed where one ricinoleoyl group from de novo-synthesized DAG is selectivity transferred to PC. Nonricinoleate DAG is formed and ricinoleoyl groups entering PC are re-used either in de novo synthesis of DAG with two ricinoleoyl groups or in direct synthesis of triricinoleoyl TAG by PDAT. The PC-derived DAG is not used in TAG synthesis but is proposed to serve as a substrate in membrane lipid biosynthesis during oil deposition.
蓖麻(Ricinus communis)种子油(三酰基甘油 [TAG])由约 90%的工业上重要的蓖麻醇酰基(12-羟基-9-十八烯酰基)基团组成。在此,从蓖麻中分离出的磷脂酰胆碱(PC):二酰基甘油(DAG)胆碱磷酸转移酶(PDCT)进行了生化特性分析,并与荠蓝(Camelina sativa)PDCT 进行了比较。含有蓖麻醇酰基的 DAG 不能被荠蓝 PDCT 有效利用,其存在抑制了“普通”酰基的 DAG 的利用。相比之下,蓖麻 PDCT 同样有效地利用了含有蓖麻醇酰基的 DAG 和含有普通酰基的 DAG,并且对含有一个蓖麻醇酰基的 DAG 的选择性是含有两个蓖麻醇酰基的 DAG 的 10 倍。评估了蓖麻 DAG 酰基转移酶 2 对不同 DAG 和酰基辅酶 A 种类的特异性和选择性,并表明在含有蓖麻醇酰基的 DAG 存在下,不会酰化不含蓖麻醇酰基的 DAG。从发育中的蓖麻胚乳制备的微粒体膜中,85%的 DAG 物种缺乏蓖麻醇酰基。这些物质中的大多数预计是由 PDCT 通过与含有一个蓖麻醇酰基的 DAG 交换形成的 PC 衍生而来。提出了 PDCT 在蓖麻胚乳中的功能方案,其中新合成的 DAG 中的一个蓖麻醇酰基被选择性转移到 PC 上。形成非蓖麻醇酸 DAG,进入 PC 的蓖麻醇酰基被重新用于新合成的具有两个蓖麻醇酰基的 DAG 或 PDAT 直接合成三蓖麻醇酰基 TAG。PC 衍生的 DAG 不用于 TAG 合成,但预计在油沉积期间作为膜脂生物合成的底物。