Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Department of Bioengineering, University of California, San Diego, California.
Am J Physiol Heart Circ Physiol. 2022 Jul 1;323(1):H49-H58. doi: 10.1152/ajpheart.00624.2021. Epub 2022 May 6.
Hyperspectral imaging (HSI) provides a fast, reliable, and noninvasive way for the study of vascular microcirculation in animal models. Rapid hyperspectral imaging of large portions of the microcirculatory preparation is critical for understanding the function and regulation of vascular microcirculatory networks. This report presents the application of an off-the-shelf benchtop HSI linear scanning system to acquire larger field-of-view images of microcirculatory preparations. The HSI line detector was displaced perpendicular to the scanning direction to map larger areas, with a rate of displacement determined by the scanning rate and the exposure time. Analysis of the collected image was used to assess dynamic changes in the microcirculation. The system records dynamic changes in microvascular hemoglobin oxygen (HbO) saturation and vascular morphology during hypoxia and reoxygenation and has similar acquisition speeds to commonly referenced spectral-scanning HSI systems. In addition, the HbO saturations collected via HSI closely correlate with those collected by phosphorescence quenching microscopy. The reported system enables dynamic functional imaging of the microcirculation for broad experimental and clinical applications. This study presents a novel bench setup and algorithm to measure intravascular hemoglobin oxygen saturation in microcirculation. Wide-field hyperspectral imaging allows for rapid quantification of intravascular changes in hemoglobin saturation. The method described in this manuscript can expand the understanding of oxygen delivery to tissues in vivo.
高光谱成像 (HSI) 为研究动物模型中的血管微循环提供了一种快速、可靠和非侵入性的方法。快速高光谱成像大面积的微循环制剂对于理解血管微循环网络的功能和调节至关重要。本报告介绍了一种现成的台式 HSI 线扫描系统在获取更大的微循环制剂视野图像中的应用。HSI 线探测器垂直于扫描方向移动,以映射更大的区域,移动速度由扫描速度和曝光时间决定。对采集到的图像进行分析,以评估微循环的动态变化。该系统记录缺氧和复氧过程中小血管血红蛋白氧 (HbO) 饱和度和血管形态的动态变化,其采集速度与常用的光谱扫描 HSI 系统相似。此外,通过 HSI 采集的 HbO 饱和度与磷光猝灭显微镜采集的饱和度密切相关。所报道的系统能够实现微循环的动态功能成像,适用于广泛的实验和临床应用。本研究提出了一种新的基于工作台的测量微血管内血红蛋白氧饱和度的系统和算法。宽场高光谱成像可快速定量血红蛋白饱和度的血管内变化。本文描述的方法可以扩展对体内组织氧输送的理解。