Suppr超能文献

探索 TEMPO 氧化纳米原纤纤维素和短离子互补肽复合水凝胶作为生物功能细胞支架。

Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds.

机构信息

Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali 140306, Punjab, India.

出版信息

Biomacromolecules. 2022 Jun 13;23(6):2496-2511. doi: 10.1021/acs.biomac.2c00234. Epub 2022 May 6.

Abstract

Multicomponent self-assembly is an emerging approach in peptide nanotechnology to develop nanomaterials with superior physical and biological properties. Inspired by the multicomponent nature of the native extracellular matrix (ECM) and the well-established advantages of co-assembly in the field of nanotechnology, we have attempted to explore the noncovalent interactions among the sugar and peptide-based biomolecular building blocks as an approach to design and develop advanced tissue scaffolds. We utilized TEMPO-oxidized nanofibrillar cellulose (TO-NFC) and a short ionic complementary peptide, Nap-FEFK, to fabricate highly tunable supramolecular hydrogels. The differential doping of the peptide into the TO-NFC hydrogel was observed to tune the surface hydrophobicity, microporosity, and mechanical stiffness of the scaffold. Interestingly, a differential cellular response was observed toward composite scaffolds with a variable ratio of TO-NFC versus Nap-FEFK. Composite scaffolds having a 10:1 (w/w) ratio of TO-NFC and the Nap-FEFK peptide showed enhanced cellular survival and proliferation under two-dimensional cell culture conditions. More interestingly, the cellular proliferation on the 10:1 matrix was found to be similar to that of Matrigel in three-dimensional culture conditions, which clearly indicated the potential of these hydrogels in advanced tissue engineering applications. Additionally, these composite hydrogels did not elicit any significant inflammatory response in Raw cells and supported their survival and proliferation, which further emphasized their ability to form versatile scaffolds for tissue regeneration. This multicomponent assembly approach to construct biomolecular composite hydrogels to access superior physical and biological properties within the scaffold is expected to improve the scope for designing novel ECM-mimicking biomaterials for regenerative medicine.

摘要

多组分自组装是一种新兴的肽纳米技术方法,用于开发具有优异物理和生物特性的纳米材料。受天然细胞外基质 (ECM) 的多组分性质和纳米技术领域中共组装的成熟优势的启发,我们试图探索糖和基于肽的生物分子构建块之间的非共价相互作用,作为设计和开发先进组织支架的一种方法。我们利用 TEMPO 氧化纳米原纤纤维素 (TO-NFC) 和短离子互补肽 Nap-FEFK 来制造高度可调的超分子水凝胶。观察到肽在 TO-NFC 水凝胶中的差异掺杂可调节支架的表面疏水性、微孔性和机械刚度。有趣的是,对具有不同 TO-NFC 与 Nap-FEFK 比例的复合支架观察到了不同的细胞反应。TO-NFC 和 Nap-FEFK 肽的比例为 10:1 (w/w) 的复合支架在二维细胞培养条件下显示出增强的细胞存活率和增殖。更有趣的是,在三维培养条件下,发现细胞在 10:1 基质上的增殖与 Matrigel 相似,这清楚地表明了这些水凝胶在先进组织工程应用中的潜力。此外,这些复合水凝胶在 Raw 细胞中没有引起任何明显的炎症反应,并支持它们的存活和增殖,这进一步强调了它们形成多功能支架用于组织再生的能力。这种构建生物分子复合水凝胶的多组分组装方法有望改善设计用于再生医学的新型 ECM 模拟生物材料的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验