State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Cell Prolif. 2023 May;56(5):e13465. doi: 10.1111/cpr.13465. Epub 2023 May 17.
Liver disease is one of the serious threats to human life and health. Three-dimensional (3D) liver models, which simulate the structure and function of natural liver tissue in vitro, have become a common demand in medical, scientific and pharmaceutical fields nowadays. However, the complex cellular composition and multi-scale spatial arrangement of liver tissue make it extremely challenging to construct liver models in vitro. According to HepaRG preference and printing strategy, the formulation of bioink system with opposite charge is optimized. The sodium alginate-based bioink 1 and dipeptide-based bioink 2 are used to ensure structural integrity and provide flexible designability, respectively. The HepaRG/HUVECs/LX-2-laden liver organoids with biomimetic lobule structure are fabricated by a multicellular 3D droplet-based bioprinting strategy, to mimic the cell heterogeneity, spatial structure and extracellular matrix (ECM) features. The liver organoids can maintain structural integrity and multicellular distribution within the printed lobule-like structure after 7 days of culture. Compared with the 2D monolayer culture, the constructed 3D organoids show high cell viability, ALB secretion and urea synthesis levels. This study provides a droplet-based and layer-by-layer 3D bioprinting strategy for in vitro construction of liver organoids with biomimetic lobule structure, giving meaningful insights in the fields of new drugs, disease modelling, and tissue regeneration.
肝脏疾病是人类生命和健康的严重威胁之一。目前,在医学、科学和制药领域,模拟天然肝组织结构和功能的三维(3D)肝脏模型已成为一种常见需求。然而,肝脏组织复杂的细胞组成和多尺度空间排列使得在体外构建肝脏模型极具挑战性。根据 HepaRG 的偏好和打印策略,优化了带有相反电荷的生物墨水系统配方。基于海藻酸钠的生物墨水 1 和二肽基生物墨水 2 分别用于确保结构完整性和提供灵活的可设计性。通过基于多细胞 3D 液滴的生物打印策略构建具有仿生小叶结构的 HepaRG/HUVECs/LX-2 负载的肝类器官,以模拟细胞异质性、空间结构和细胞外基质(ECM)特征。在培养 7 天后,打印的小叶状结构内的肝类器官保持结构完整性和多细胞分布。与 2D 单层培养相比,构建的 3D 类器官显示出更高的细胞活力、ALB 分泌和尿素合成水平。本研究提供了一种基于液滴和逐层 3D 生物打印策略,用于体外构建具有仿生小叶结构的肝类器官,为新药研发、疾病建模和组织再生等领域提供了有意义的见解。