State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2121550119. doi: 10.1073/pnas.2121550119. Epub 2022 May 6.
Reconstruction of past solar activity or high-energy events of our space environment using cosmogenic radionuclides allows evaluation of their intensities, frequencies, and potential damages to humans in near space, modern satellite technologies, and ecosystems. This approach is limited by our understanding of cosmogenic radionuclide production, transformation, and transport in the atmosphere. Cosmogenic radiosulfur (S) provides additional insights due to its ideal half-life (87.4 d), extensively studied atmospheric chemistry (gas and solid), and ubiquitous nature. Here, we report multiyear measurements of atmospheric S and show the sensitivity of S in tracking solar activity in Solar Cycle 24 and regional atmospheric circulation changes during the 2015/2016 El Niño. Incorporating S into a universal cosmogenic radionuclide model as an independent parameter facilitates better modeling of production and transport of other long-lived radionuclides with different atmospheric chemistries used for reconstructing past astronomical, geomagnetic, and climatic events.
利用宇宙成因放射性核素重建过去的太阳活动或我们空间环境中的高能事件,可以评估其在近地空间、现代卫星技术和生态系统中对人类的强度、频率和潜在影响。这种方法受到我们对大气中宇宙成因放射性核素产生、转化和传输的理解的限制。由于宇宙成因放射性硫(S)具有理想的半衰期(87.4 天)、广泛研究的大气化学(气体和固体)以及普遍存在的特性,因此提供了更多的见解。在这里,我们报告了多年来大气 S 的测量结果,并展示了 S 在跟踪太阳活动和 2015/2016 年厄尔尼诺期间区域大气环流变化方面的敏感性。将 S 纳入通用宇宙成因放射性核素模型作为一个独立参数,可以更好地模拟不同大气化学性质的其他长寿命放射性核素的产生和传输,这些放射性核素用于重建过去的天文、地磁和气候事件。