School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.
CEREGE, Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Technopole de l'Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France.
Science. 2021 Nov 5;374(6568):eabd7096. doi: 10.1126/science.abd7096.
Radiocarbon (C), as a consequence of its production in the atmosphere and subsequent dispersal through the carbon cycle, is a key tracer for studying the Earth system. Knowledge of past C levels improves our understanding of climate processes, the Sun, the geodynamo, and the carbon cycle. Recently updated radiocarbon calibration curves (IntCal20, SHCal20, and Marine20) provide unprecedented accuracy in our estimates of C levels back to the limit of the C technique (~55,000 years ago). Such improved detail creates new opportunities to probe the Earth and climate system more reliably and at finer scale. We summarize the advances that have underpinned this revised set of radiocarbon calibration curves, survey the broad scientific landscape where additional detail on past C provides insight, and identify open challenges for the future.
放射性碳(C)是在大气中产生并通过碳循环分散的结果,是研究地球系统的关键示踪剂。过去 C 水平的知识提高了我们对气候过程、太阳、地磁场和碳循环的理解。最近更新的放射性碳校准曲线(IntCal20、SHCal20 和 Marine20)在我们对 C 水平的估计中提供了前所未有的精度,可追溯到 C 技术的极限(约 55000 年前)。这种更详细的信息为更可靠和更精细地探测地球和气候系统提供了新的机会。我们总结了支持这组修订的放射性碳校准曲线的进展,调查了过去 C 提供见解的广泛科学领域,并确定了未来的开放挑战。