Shayegan Komron J, Zhao Bo, Kim Yonghwi, Fan Shanhui, Atwater Harry A
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
Sci Adv. 2022 May 6;8(18):eabm4308. doi: 10.1126/sciadv.abm4308.
Nonreciprocal elements are a vital building block of electrical and optical systems. In the infrared regime, there is a particular interest in structures that break reciprocity because their thermal absorptive (and emissive) properties should not obey the Kirchhoff thermal radiation law. In this work, we break time-reversal symmetry and reciprocity in n-type-doped magneto-optic InAs with a static magnetic field where light coupling is mediated by a guided-mode resonator structure, whose resonant frequency coincides with the epsilon-near-zero resonance of the doped indium arsenide. Using this structure, we observe the nonreciprocal absorptive behavior as a function of magnetic field and scattering angle in the infrared. Accounting for resonant and nonresonant optical scattering, we reliably model experimental results that break reciprocal absorption relations in the infrared. The ability to design these nonreciprocal absorbers opens an avenue to explore devices with unequal absorptivity and emissivity in specific channels.
非互易元件是电气和光学系统的重要组成部分。在红外波段,人们对破坏互易性的结构尤为感兴趣,因为它们的热吸收(和发射)特性不应遵循基尔霍夫热辐射定律。在这项工作中,我们通过静态磁场打破了n型掺杂磁光InAs中的时间反演对称性和互易性,其中光耦合由导模谐振器结构介导,其谐振频率与掺杂砷化铟的近零介电常数谐振相重合。利用这种结构,我们观察到了红外波段中作为磁场和散射角函数的非互易吸收行为。考虑到共振和非共振光散射,我们可靠地模拟了在红外波段打破互易吸收关系的实验结果。设计这些非互易吸收器的能力为探索在特定通道中具有不等吸收率和发射率的器件开辟了一条途径。