Van Fossen Elise M, Bednar Riley M, Jana Subhashis, Franklin Rachel, Beckman Joseph, Karplus P Andrew, Mehl Ryan A
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, OR 97330, USA.
Sci Adv. 2022 May 6;8(18):eabm6909. doi: 10.1126/sciadv.abm6909.
Assembling nanobodies (Nbs) into polyvalent multimers is a powerful strategy for improving the effectiveness of Nb-based therapeutics and biotechnological tools. However, generally effective approaches to Nb assembly are currently restricted to the amino or carboxyl termini, greatly limiting the diversity of Nb multimer topologies that can be produced. Here, we show that reactive tetrazine groups-site-specifically inserted by genetic code expansion at Nb surface sites-are compatible with Nb folding and function, enabling Nb assembly at any desired point. Using two anti-SARS-CoV-2 Nbs with viral neutralization ability, we created Nb homo- and heterodimers with improved properties compared with conventionally linked Nb homodimers, which, in the case of our tetrazine-conjugated trimer, translated into enhanced viral neutralization. Thus, this tetrazine-based approach is a generally applicable strategy that greatly increases the accessible range of Nb assembly topologies, and thereby adds the optimization of topology as an effective avenue to generate Nb assemblies with improved efficacy.
将纳米抗体(Nb)组装成多价多聚体是提高基于Nb的治疗药物和生物技术工具有效性的有力策略。然而,目前普遍有效的Nb组装方法仅限于氨基或羧基末端,这极大地限制了可产生的Nb多聚体拓扑结构的多样性。在这里,我们表明,通过遗传密码扩展在Nb表面位点特异性插入的反应性四嗪基团与Nb折叠和功能兼容,能够在任何所需位点进行Nb组装。使用两种具有病毒中和能力的抗SARS-CoV-2 Nb,我们创建了与传统连接的Nb同二聚体相比具有更好性能的Nb同二聚体和异二聚体,在我们的四嗪共轭三聚体的情况下,这转化为增强的病毒中和能力。因此,这种基于四嗪的方法是一种普遍适用的策略,大大增加了可获得的Nb组装拓扑结构范围,从而将拓扑优化作为产生具有更高疗效的Nb组装体的有效途径。