Department of Clinical Radiology, Kyushu University, Fukuoka, Japan.
Department of Radiology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan.
Br J Radiol. 2022 Jul 1;95(1135):20211066. doi: 10.1259/bjr.20211066. Epub 2022 May 9.
To develop and validate deep convolutional neural network (DCNN) models for the diagnosis of adrenal adenoma (AA) using CT.
This retrospective study enrolled 112 patients who underwent abdominal CT (non-contrast, early, and delayed phases) with 107 adrenal lesions (83 AAs and 24 non-AAs) confirmed pathologically and with 8 lesions confirmed by follow-up as metastatic carcinomas. Three patients had adrenal lesions on both sides. We constructed six DCNN models from six types of input images for comparison: non-contrast images only (Model A), delayed phase images only (Model B), three phasic images merged into a 3-channel (Model C), relative washout rate (RWR) image maps only (Model D), non-contrast and RWR maps merged into a 2-channel (Model E), and delayed phase and RWR maps merged into a 2-channel (Model F). These input images were prepared manually with cropping and registration of CT images. Each DCNN model with six convolutional layers was trained with data augmentation and hyperparameter tuning. The optimal threshold values for binary classification were determined from the receiver-operating characteristic curve analyses. We adopted the nested cross-validation method, in which the outer fivefold cross-validation was used to assess the diagnostic performance of the models and the inner fivefold cross-validation was used to tune hyperparameters of the models.
The areas under the curve with 95% confidence intervals of Models A-F were 0.94 [0.90, 0.98], 0.80 [0.69, 0.89], 0.97 [0.94, 1.00], 0.92 [0.85, 0.97], 0.99 [0.97, 1.00] and 0.94 [0.86, 0.99], respectively. Model E showed high area under the curve greater than 0.95.
DCNN models may be a useful tool for the diagnosis of AA using CT.
The current study demonstrates a deep learning-based approach could differentiate adrenal adenoma from non-adenoma using multiphasic CT.
开发并验证使用 CT 诊断肾上腺腺瘤 (AA) 的深度卷积神经网络 (DCNN) 模型。
本回顾性研究纳入了 112 名接受腹部 CT(非对比期、早期和延迟期)检查且有 107 个肾上腺病变(83 个 AA 和 24 个非 AA)的患者,这些病变均经病理证实,其中 8 个病变经随访证实为转移性癌。3 名患者双侧均有肾上腺病变。我们构建了六个来自六种输入图像的 DCNN 模型进行比较:仅非对比期图像(模型 A)、仅延迟期图像(模型 B)、三时相图像合并为三通道(模型 C)、相对洗脱率(RWR)图像图仅(模型 D)、非对比期和 RWR 图像合并为两通道(模型 E)以及延迟期和 RWR 图像合并为两通道(模型 F)。这些输入图像是通过裁剪和 CT 图像注册手动制备的。每个具有六个卷积层的 DCNN 模型均经过数据扩充和超参数调整进行训练。最佳二分类阈值值通过受试者工作特征曲线分析确定。我们采用嵌套交叉验证法,其中外部五折交叉验证用于评估模型的诊断性能,内部五折交叉验证用于调整模型的超参数。
模型 A-F 的曲线下面积及其 95%置信区间分别为 0.94 [0.90, 0.98]、0.80 [0.69, 0.89]、0.97 [0.94, 1.00]、0.92 [0.85, 0.97]、0.99 [0.97, 1.00]和 0.94 [0.86, 0.99]。模型 E 的曲线下面积较高,大于 0.95。
DCNN 模型可能是使用 CT 诊断 AA 的有用工具。
本研究表明,基于深度学习的方法可以使用多期 CT 从非腺瘤中区分出肾上腺腺瘤。