Suppr超能文献

基于深度学习的肾上腺腺瘤诊断方法:一项使用 CT 的新试验。

A deep learning-based approach for the diagnosis of adrenal adenoma: a new trial using CT.

机构信息

Department of Clinical Radiology, Kyushu University, Fukuoka, Japan.

Department of Radiology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan.

出版信息

Br J Radiol. 2022 Jul 1;95(1135):20211066. doi: 10.1259/bjr.20211066. Epub 2022 May 9.

Abstract

OBJECTIVE

To develop and validate deep convolutional neural network (DCNN) models for the diagnosis of adrenal adenoma (AA) using CT.

METHODS

This retrospective study enrolled 112 patients who underwent abdominal CT (non-contrast, early, and delayed phases) with 107 adrenal lesions (83 AAs and 24 non-AAs) confirmed pathologically and with 8 lesions confirmed by follow-up as metastatic carcinomas. Three patients had adrenal lesions on both sides. We constructed six DCNN models from six types of input images for comparison: non-contrast images only (Model A), delayed phase images only (Model B), three phasic images merged into a 3-channel (Model C), relative washout rate (RWR) image maps only (Model D), non-contrast and RWR maps merged into a 2-channel (Model E), and delayed phase and RWR maps merged into a 2-channel (Model F). These input images were prepared manually with cropping and registration of CT images. Each DCNN model with six convolutional layers was trained with data augmentation and hyperparameter tuning. The optimal threshold values for binary classification were determined from the receiver-operating characteristic curve analyses. We adopted the nested cross-validation method, in which the outer fivefold cross-validation was used to assess the diagnostic performance of the models and the inner fivefold cross-validation was used to tune hyperparameters of the models.

RESULTS

The areas under the curve with 95% confidence intervals of Models A-F were 0.94 [0.90, 0.98], 0.80 [0.69, 0.89], 0.97 [0.94, 1.00], 0.92 [0.85, 0.97], 0.99 [0.97, 1.00] and 0.94 [0.86, 0.99], respectively. Model E showed high area under the curve greater than 0.95.

CONCLUSION

DCNN models may be a useful tool for the diagnosis of AA using CT.

ADVANCES IN KNOWLEDGE

The current study demonstrates a deep learning-based approach could differentiate adrenal adenoma from non-adenoma using multiphasic CT.

摘要

目的

开发并验证使用 CT 诊断肾上腺腺瘤 (AA) 的深度卷积神经网络 (DCNN) 模型。

方法

本回顾性研究纳入了 112 名接受腹部 CT(非对比期、早期和延迟期)检查且有 107 个肾上腺病变(83 个 AA 和 24 个非 AA)的患者,这些病变均经病理证实,其中 8 个病变经随访证实为转移性癌。3 名患者双侧均有肾上腺病变。我们构建了六个来自六种输入图像的 DCNN 模型进行比较:仅非对比期图像(模型 A)、仅延迟期图像(模型 B)、三时相图像合并为三通道(模型 C)、相对洗脱率(RWR)图像图仅(模型 D)、非对比期和 RWR 图像合并为两通道(模型 E)以及延迟期和 RWR 图像合并为两通道(模型 F)。这些输入图像是通过裁剪和 CT 图像注册手动制备的。每个具有六个卷积层的 DCNN 模型均经过数据扩充和超参数调整进行训练。最佳二分类阈值值通过受试者工作特征曲线分析确定。我们采用嵌套交叉验证法,其中外部五折交叉验证用于评估模型的诊断性能,内部五折交叉验证用于调整模型的超参数。

结果

模型 A-F 的曲线下面积及其 95%置信区间分别为 0.94 [0.90, 0.98]、0.80 [0.69, 0.89]、0.97 [0.94, 1.00]、0.92 [0.85, 0.97]、0.99 [0.97, 1.00]和 0.94 [0.86, 0.99]。模型 E 的曲线下面积较高,大于 0.95。

结论

DCNN 模型可能是使用 CT 诊断 AA 的有用工具。

知识进展

本研究表明,基于深度学习的方法可以使用多期 CT 从非腺瘤中区分出肾上腺腺瘤。

相似文献

5
8
Deep learning for staging liver fibrosis on CT: a pilot study.深度学习在 CT 上分期肝纤维化:一项初步研究。
Eur Radiol. 2018 Nov;28(11):4578-4585. doi: 10.1007/s00330-018-5499-7. Epub 2018 May 14.

引用本文的文献

5
Adrenal lesion classification with abdomen caps and the effect of ROI size.肾上腺病变分类与腹部帽及 ROI 大小的影响。
Phys Eng Sci Med. 2023 Jun;46(2):865-875. doi: 10.1007/s13246-023-01259-y. Epub 2023 Apr 25.

本文引用的文献

9
Convolutional neural networks: an overview and application in radiology.卷积神经网络:概述及其在放射学中的应用。
Insights Imaging. 2018 Aug;9(4):611-629. doi: 10.1007/s13244-018-0639-9. Epub 2018 Jun 22.
10
Deep learning with convolutional neural network in radiology.放射学中基于卷积神经网络的深度学习。
Jpn J Radiol. 2018 Apr;36(4):257-272. doi: 10.1007/s11604-018-0726-3. Epub 2018 Mar 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验