Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP45150, Mexico.
Life Sci. 2022 Jul 15;301:120612. doi: 10.1016/j.lfs.2022.120612. Epub 2022 May 4.
Melatonin is an ancient molecule that originated in bacteria. When these prokaryotes were phagocytized by early eukaryotes, they eventually developed into mitochondria and chloroplasts. These new organelles retained the melatonin synthetic capacity of their forerunners such that all present-day animal and plant cells may produce melatonin in their mitochondria and chloroplasts. Melatonin concentrations are higher in mitochondria than in other subcellular compartments. Isolated mouse oocyte mitochondria form melatonin when they are incubated with serotonin, a necessary precursor. Oocyte mitochondria subsequently give rise to these organelles in all adult vertebrate cells where they continue to synthesize melatonin. The enzymes that convert serotonin to melatonin, i.e., arylalkylamine-N-acetyltransferase (AANAT) and acetylserotonin-O-methyltransferase, have been identified in brain mitochondria which, when incubated with serotonin, also form melatonin. Melatonin is a potent antioxidant and anti-cancer agent and is optimally positioned in mitochondria to aid in the maintenance of oxidative homeostasis and to reduce cancer cell transformation. Melatonin stimulates the transfer of mitochondria from healthy cells to damaged cells via tunneling nanotubes. Melatonin also regulates the major NAD-dependent deacetylase, sirtuin 3, in the mitochondria. Disruptions of mitochondrial melatonin synthesis may contribute to a number of mitochondria-related diseases, as discussed in this review.
褪黑素是一种古老的分子,起源于细菌。当这些原核生物被早期真核生物吞噬时,它们最终发展成线粒体和叶绿体。这些新的细胞器保留了其前身的褪黑素合成能力,以至于所有现代动植物细胞都可能在其线粒体和叶绿体中产生褪黑素。线粒体中的褪黑素浓度高于其他亚细胞区室。当用血清素孵育时,分离的小鼠卵母细胞线粒体形成褪黑素,血清素是一种必需的前体。卵母细胞线粒体随后在所有成年脊椎动物细胞中产生这些细胞器,在这些细胞器中继续合成褪黑素。将血清素转化为褪黑素的酶,即芳基烷基胺-N-乙酰基转移酶(AANAT)和乙酰血清素-O-甲基转移酶,已在脑线粒体中鉴定出来,当与血清素一起孵育时,也会形成褪黑素。褪黑素是一种有效的抗氧化剂和抗癌剂,在最佳位置的线粒体中,有助于维持氧化平衡,并减少癌细胞转化。褪黑素通过隧道纳米管刺激将线粒体从健康细胞转移到受损细胞。褪黑素还调节线粒体中的主要 NAD 依赖性脱乙酰酶,即 SIRT3。线粒体褪黑素合成的破坏可能导致许多与线粒体相关的疾病,正如本综述中所讨论的那样。