Suppr超能文献

一种用于自主无人机系统决策的基于自适应神经模糊推理系统的新型元启发式算法。

A novel metaheuristics with adaptive neuro-fuzzy inference system for decision making on autonomous unmanned aerial vehicle systems.

作者信息

Ragab Mahmoud, Ashary Ehab Bahaudien, Aljedaibi Wajdi H, Alzahrani Ibrahim R, Kumar Anil, Gupta Deepak, Mansour Romany F

机构信息

Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mathematics Department, Faculty of Science, Al-Azhar University, Naser City 11884, Cairo, Egypt.

Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

ISA Trans. 2023 Jan;132:16-23. doi: 10.1016/j.isatra.2022.04.006. Epub 2022 Apr 13.

Abstract

Recently, autonomous systems have received considerable attention amongst research communities and academicians. Unmanned aerial vehicles (UAVs) find useful in several applications like transportation, surveillance, disaster management, and wildlife monitoring. One of the important issues in the UAV system is energy efficiency, which can be resolved by the use of clustering approaches. In addition, high resolution remote sensing images need to be classified for effective decision making using deep learning (DL) models. Though several models are available in the literature, only few approaches have focused on the clustering and classification processes in UAV networks. In this aspect, this paper designs a novel metaheuristic with an adaptive neuro-fuzzy inference system for decision making named MANFIS-DM technique on autonomous UAV systems. The proposed MANFIS-DM technique intends to effectively organize the UAV networks into clusters and then classify the images into appropriate class labels. The proposed MANFIS-DM technique encompasses two major stages namely quantum different evolution based clustering (QDE-C) technique and ANFIS based classification technique. Primarily, the QDE-C technique involves the design of a fitness function involving three parameters namely average distance, distance to UAVs, and UAV degree. Besides, the image classification model involves a set of subprocesses namely DenseNet based feature extraction, Adadelta based hyperparameter optimization, and ANFIS based classification. The design of QDE-C algorithm with classification model for autonomous UAV systems show the novelty of the work. The experimental result analysis of the MANFIS-DM method is carried out against benchmark dataset and the results ensured the enhanced performance of the MANFIS-DM technique over the other methods with the maximum accu of 99.13%.

摘要

最近,自主系统在研究团体和学者中受到了广泛关注。无人驾驶飞行器(UAV)在运输、监视、灾害管理和野生动物监测等多种应用中都很有用。无人机系统中的一个重要问题是能源效率,这可以通过使用聚类方法来解决。此外,需要使用深度学习(DL)模型对高分辨率遥感图像进行分类,以便做出有效的决策。尽管文献中有几种模型,但只有少数方法关注无人机网络中的聚类和分类过程。在这方面,本文为自主无人机系统设计了一种新颖的元启发式算法,即基于自适应神经模糊推理系统的决策方法MANFIS-DM技术。所提出的MANFIS-DM技术旨在有效地将无人机网络组织成簇,然后将图像分类为适当的类别标签。所提出的MANFIS-DM技术包括两个主要阶段,即基于量子差分进化的聚类(QDE-C)技术和基于自适应神经模糊推理系统(ANFIS)的分类技术。首先,QDE-C技术涉及设计一个包含平均距离、到无人机的距离和无人机度数这三个参数的适应度函数。此外,图像分类模型包括一组子过程,即基于DenseNet的特征提取、基于Adadelta的超参数优化和基于ANFIS的分类。针对自主无人机系统设计的带有分类模型的QDE-C算法显示了这项工作的新颖性。针对基准数据集对MANFIS-DM方法进行了实验结果分析,结果表明MANFIS-DM技术的性能优于其他方法,最高准确率达到99.13%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验